APOPTOSIS AND NECROSIS - 2 DISTINCT EVENTS INDUCED, RESPECTIVELY, BY MILD AND INTENSE INSULTS WITH N-METHYL-D-ASPARTATE OR NITRIC-OXIDE SUPEROXIDE IN CORTICAL CELL-CULTURES

被引:1727
作者
BONFOCO, E
KRAINC, D
ANKARCRONA, M
NICOTERA, P
LIPTON, SA
机构
[1] CHILDRENS HOSP,MOLEC & CELLULAR NEUROSCI LAB,BOSTON,MA 02115
[2] HARVARD UNIV,SCH MED,PROGRAM NEUROSCI,BOSTON,MA 02115
[3] KAROLINSKA INST,DIV TOXICOL,DEPT ENVIRONM MED,S-17177 STOCKHOLM,SWEDEN
关键词
EXCITOTOXICITY; CORTICAL NEURONS; PEROXYNITRITE;
D O I
10.1073/pnas.92.16.7162
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
N-Methyl-D-aspartate (NMDA) receptor-mediated neurotoxicity may depend, in part, on the generation of nitric oxide (NO.) and superoxide anion (O-2(.-)), which react to form peroxynitrite (OONO-). This form of neurotoxicity is thought to contribute to a final common pathway of injury in a wide variety of acute and chronic neurologic disorders, including focal ischemia, trauma, epilepsy, Huntington disease, Alzheimer disease, amyotrophic lateral sclerosis, AIDS dementia, and other neurodegenerative diseases. Here, we report that exposure of cortical neurons to relatively short durations or low concentrations of NMDA, S-nitrosocysteine, or 3-morpholinosydnonimine, which generate low levels of peroxynitrite, induces a delayed form of neurotoxicity predominated by apoptotic features. Pretreatment with superoxide dismutase and catalase to scavenge O-2(.-) partially prevents the apoptotic process triggered by S-nitrosocysteine or 3-morpholinosydnonimine. In contrast, intense exposure to high concentrations of NMDA or peroxynitrite induces necrotic cell damage characterized by acute swelling and lysis, which cannot be ameliorated by superoxide dismutase and catalase. Thus, depending on the intensity of the initial insult, NMDA or nitric oxide/superoxide can result in either apoptotic or necrotic neuronal cell damage.
引用
收藏
页码:7162 / 7166
页数:5
相关论文
共 24 条
[1]   INTERLEUKIN-1 BETA-INDUCED NITRIC-OXIDE PRODUCTION ACTIVATES APOPTOSIS IN PANCREATIC RINM5F CELLS [J].
ANKARCRONA, M ;
DYPBUKT, JM ;
BRUNE, B ;
NICOTERA, P .
EXPERIMENTAL CELL RESEARCH, 1994, 213 (01) :172-177
[2]   APPARENT HYDROXYL RADICAL PRODUCTION BY PEROXYNITRITE - IMPLICATIONS FOR ENDOTHELIAL INJURY FROM NITRIC-OXIDE AND SUPEROXIDE [J].
BECKMAN, JS ;
BECKMAN, TW ;
CHEN, J ;
MARSHALL, PA ;
FREEMAN, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (04) :1620-1624
[3]   MAMMALIAN CHROMATIN SUBSTRUCTURE STUDIES WITH CALCIUM-MAGNESIUM ENDONUCLEASE AND 2-DIMENSIONAL POLYACRYLAMIDE-GEL ELECTROPHORESIS [J].
BURGOYNE, LA ;
HEWISH, DR ;
MOBBS, J .
BIOCHEMICAL JOURNAL, 1974, 143 (01) :67-&
[4]   CELL-DEATH BY APOPTOSIS AND ITS PROTECTIVE ROLE AGAINST DISEASE [J].
BURSCH, W ;
OBERHAMMER, F ;
SCHULTEHERMANN, R .
TRENDS IN PHARMACOLOGICAL SCIENCES, 1992, 13 (06) :245-251
[5]   NITRIC-OXIDE MEDIATES GLUTAMATE NEUROTOXICITY IN PRIMARY CORTICAL CULTURES [J].
DAWSON, VL ;
DAWSON, TM ;
LONDON, ED ;
BREDT, DS ;
SNYDER, SH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (14) :6368-6371
[6]   GLUTAMATE-INDUCED NEURONAL DEATH IS NOT A PROGRAMMED CELL-DEATH IN CEREBELLAR CULTURE [J].
DESSI, F ;
CHARRIAUTMARLANGUE, C ;
KHRESTCHATISKY, M ;
BENARI, Y .
JOURNAL OF NEUROCHEMISTRY, 1993, 60 (05) :1953-1955
[7]  
DUKE RC, 1986, LYMPHOKINE RES, V5, P289
[8]  
ELLIS RE, 1991, ANNU REV CELL BIOL, V7, P663, DOI 10.1146/annurev.cb.07.110191.003311
[9]   IDENTIFICATION OF PROGRAMMED CELL-DEATH INSITU VIA SPECIFIC LABELING OF NUCLEAR-DNA FRAGMENTATION [J].
GAVRIELI, Y ;
SHERMAN, Y ;
BENSASSON, SA .
JOURNAL OF CELL BIOLOGY, 1992, 119 (03) :493-501
[10]   PRODUCTION OF HYDROXYL RADICALS FROM THE SIMULTANEOUS GENERATION OF SUPEROXIDE AND NITRIC-OXIDE [J].
HOGG, N ;
DARLEYUSMAR, VM ;
WILSON, MT ;
MONCADA, S .
BIOCHEMICAL JOURNAL, 1992, 281 :419-424