Control of endothelial cell gene expression by flow

被引:144
作者
Malek, AM
Izumo, S
机构
[1] CHILDRENS HOSP, BOSTON, MA 02215 USA
[2] HARVARD UNIV, SCH MED, BOSTON, MA 02215 USA
[3] UNIV MICHIGAN, CARDIOVASC RES CTR, ANN ARBOR, MI 48109 USA
基金
美国国家卫生研究院;
关键词
atherosclerosis; shear stress; endothelin-1; growth factors; mechanical stress;
D O I
10.1016/0021-9290(95)00099-2
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The vessel wall is constantly subjected to, and affected by, the stresses resulting from the hemodynamic stimuli of transmural pressure and flow. At the interface between blood and the vessel wall, the endothelial cell plays a crucial role in controlling vessel structure and function in response to changes in hemodynamic conditions. Using bovine aortic endothelium monolayers, we show that fluid shear stress causes simultaneous differential regulation of endothelial-derived products. We also report that the downregulation of endothelin-1 mRNA by flow is a reversible process, and through the use of uncharged dextran supplementation demonstrate it to be shear stress- rather than shear rate-dependent. Recent work on the effect of fluid shear stress on endothelial cell gene expression of a number of potent endothelial products is reviewed, including vasoactive substances, autocrine and paracrine growth factors, thrombosis/fibrinolysis modulators, chemotactic factors, surface receptors and immediate-early genes. The encountered patterns of gene expression responses are classified into three categories: a transient increase with return to baseline (type I), a sustained increase (type II) and a biphasic response consisting of an early transient increase of varying extent followed by a pronounced and sustained decrease (type III). The importance of the dynamic character of the flow stimulus and the magnitude dependence of the response are presented. Potential molecular mechanisms of shear-induced gene regulation, including putative shear stress response elements (SSRE), are discussed. These results suggest exquisite modulation of endothelial cell phenotype by local fluid shear stress and may offer insight into the mechanism of flow-dependent vascular remodeling and the observed propensity of atherosclerosis formation around bifurcations and areas of low shear stress.
引用
收藏
页码:1515 / +
页数:1
相关论文
共 84 条
[1]   MECHANISMS OF CELL-SHAPE CHANGE - THE CYTOMECHANICS OF CELLULAR-RESPONSE TO CHEMICAL ENVIRONMENT AND MECHANICAL LOADING [J].
ADAMS, DS .
JOURNAL OF CELL BIOLOGY, 1992, 117 (01) :83-93
[2]   SHEAR-STRESS INHIBITS ADHESION OF CULTURED MOUSE ENDOTHELIAL-CELLS TO LYMPHOCYTES BY DOWN-REGULATING VCAM-1 EXPRESSION [J].
ANDO, J ;
TSUBOI, H ;
KORENAGA, R ;
TAKADA, Y ;
TOYAMASORIMACHI, N ;
MIYASAKA, M ;
KAMIYA, A .
AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 267 (03) :C679-C687
[3]   FLOW PATTERNS AND SPATIAL-DISTRIBUTION OF ATHEROSCLEROTIC LESIONS IN HUMAN CORONARY-ARTERIES [J].
ASAKURA, T ;
KARINO, T .
CIRCULATION RESEARCH, 1990, 66 (04) :1045-1066
[4]   PLATELET-DERIVED GROWTH-FACTOR GENE-EXPRESSION IN HUMAN ATHEROSCLEROTIC PLAQUES AND NORMAL ARTERY WALL [J].
BARRETT, TB ;
BENDITT, EP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (08) :2810-2814
[5]   MESSENGER-RNA DECAY - FINDING THE RIGHT TARGETS [J].
BRAWERMAN, G .
CELL, 1989, 57 (01) :9-10
[6]  
CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1016/0003-2697(87)90021-2
[7]   FLOW STIMULATES ENDOTHELIAL-CELLS TO RELEASE A NITROVASODILATOR THAT IS POTENTIATED BY REDUCED THIOL [J].
COOKE, JP ;
STAMLER, J ;
ANDON, N ;
DAVIES, PF ;
MCKINLEY, G ;
LOSCALZO, J .
AMERICAN JOURNAL OF PHYSIOLOGY, 1990, 259 (03) :H804-H812
[8]   ENDOTHELIAL EXPRESSION OF A MONONUCLEAR LEUKOCYTE ADHESION MOLECULE DURING ATHEROGENESIS [J].
CYBULSKY, MI ;
GIMBRONE, MA .
SCIENCE, 1991, 251 (4995) :788-791
[9]   GROWTH-FACTOR EFFECTS ON CELLS OF THE VASCULAR WALL - A SURVEY [J].
DAMORE, PA ;
SMITH, SR .
GROWTH FACTORS, 1993, 8 (01) :61-75
[10]   MECHANICAL-STRESS MECHANISMS AND THE CELL - AN ENDOTHELIAL PARADIGM [J].
DAVIES, PF ;
TRIPATHI, SC .
CIRCULATION RESEARCH, 1993, 72 (02) :239-245