GENERALIZED MONOTONICITY AND GENERALIZED CONVEXITY

被引:44
作者
KOMLOSI, S
机构
[1] Faculty of Economics, Janus Pannonius University, Pécs
关键词
GENERALIZED MONOTONICITY; GENERALIZED DERIVATIVES; GENERALIZED CONVEXITY;
D O I
10.1007/BF02192119
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Generalized monotonocity of bifunctions or multifunctions is a rather new concept in optimization and nonsmooth analysis. It is shown in the present paper how quasiconvexity, pseudoconvexity, and strict pseudoconvexity of lower semicontinuous functions can be characterized via the quasimonotonicity, pseudomonotonicity, and strict pseudomonotonicity of different types of generalized derivatives, including the Dini, Dini-Hadamard, Clarke, and Rockafellar derivatives as well.
引用
收藏
页码:361 / 376
页数:16
相关论文
共 26 条
[1]   QUASI-CONCAVE PROGRAMMING [J].
ARROW, KJ ;
ENTHOVEN, AC .
ECONOMETRICA, 1961, 29 (04) :779-800
[2]  
AVRIEL M, 1988, GENERALIZED CONCAVIT
[3]   CONTINUITY PROPERTIES OF THE NORMAL CONE TO THE LEVEL SETS OF A QUASI-CONVEX FUNCTION [J].
BORDE, J ;
CROUZEIX, JP .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1990, 66 (03) :415-429
[4]  
BORWEIN J, 1987, SIAM J CONTROL OPTIM, V25, P1312
[5]  
Clarke F.H., 1983, OPTIMIZATION NONSMOO
[6]  
DIEWERT WE, 1981, GEN CONCAVITY OPTIMI, P51
[7]  
Ellaia R., 1991, Optimization, V22, P401, DOI 10.1080/02331939108843678
[8]  
HASSOUNI A, 1983, THESIS U P SABATIER
[9]  
HIRIARTURRUTY JB, 1985, NONDIFFERENTIABLE OP, P8
[10]  
HIRIARTURRUTY JB, 1979, B SOC MATH FRANCE ME, V60, P57