GLOBAL STABILITY FOR A CLASS OF PREDATOR-PREY SYSTEMS

被引:463
作者
HSU, SB [1 ]
HUANG, TW [1 ]
机构
[1] KAOHSIUNG NORMAL UNIV,DEPT MATH,KAOHSIUNG,TAIWAN
关键词
GLOBAL STABILITY; HOLLINGS TYPE 1; HOLLINGS TYPE 2; HOLLINGS TYPE 3; FUNCTIONAL RESPONSE; BELLING-TANNER MODEL; PREDATOR-PREY SYSTEM; DULAC CRITERION; LIAPUNOV FUNCTION; LIMIT CYCLE;
D O I
10.1137/S0036139993253201
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the question of global stability of the positive locally asymptotically stable equilibrium in a class of predator-prey systems. The Dulac's criterion is applied and Liapunov functions are constructed to establish the global stability.
引用
收藏
页码:763 / 783
页数:21
相关论文
共 19 条
[1]  
[Anonymous], 1991, MATH BIOL
[2]   COEXISTENCE OF COMPETING PREDATORS IN A CHEMOSTAT [J].
BUTLER, GJ ;
HSU, SB ;
WALTMAN, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 1983, 17 (02) :133-151
[3]  
CHENG KS, 1981, J MATH BIOL, V12, P115, DOI 10.1007/BF00275207
[4]   PERSISTENCE IN PREDATOR-PREY SYSTEMS WITH RATIO-DEPENDENT PREDATOR INFLUENCE [J].
FREEDMAN, HI ;
MATHSEN, RM .
BULLETIN OF MATHEMATICAL BIOLOGY, 1993, 55 (04) :817-827
[5]   GLOBAL STABILITY IN MANY-SPECIES SYSTEMS [J].
GOH, BS .
AMERICAN NATURALIST, 1977, 111 (977) :135-143
[6]  
Hale J.K., 1969, ORDINARY DIFFERENTIA, VXXI, P332
[7]  
Holling C. S., 1965, MEM ENTOMOL SOC CAN, V46, P1
[8]   GLOBAL STABILITY OF A PREDATOR-PREY SYSTEM [J].
HSU, SB .
MATHEMATICAL BIOSCIENCES, 1978, 39 (1-2) :1-10
[9]   CONTRIBUTION TO THE THEORY OF COMPETING PREDATORS [J].
HSU, SB ;
HUBBELL, SP ;
WALTMAN, P .
ECOLOGICAL MONOGRAPHS, 1978, 48 (03) :337-349
[10]  
HSU SB, 1978, SIAM J APPL MATH, V35, P525