cDNA clones encoding the sequence-specific DNA binding protein, serum response factor (SRF), have been isolated from a Xenopus laevis neurula library and their nucleotide sequence determined. The Xenopus SRF (SRF(X)) gene produces multiple-sized transcripts, present at 10(5) copies per unfertilized egg. A similar level is detected in the embryo during early cleavage, but SRF(X) transcripts accumulate rapidly following gastrulation. The protein they encode is similar in sequence to human SRF in its central and carboxy-terminal regions, but possesses a divergent amino-terminal portion. We have previously described a Xenopus embryo sequence-specific binding activity that recognized the CArG motif of the cardiac actin gene promoter. Here we show that the DNA-binding characteristics of synthetic SRF(X) are indistinguishable from those of the embryo factor. Moreover, antiserum raised against the synthetic SRF(X) recognizes this factor. Together, these results establish that the same factor binds to elements required for constitutive transcription in Xenopus oocytes, muscle-specific gene expression in Xenopus embryos and serum-responsive transcription in cultured amphibian cells.