STABILITY, BIFURCATION AND CHAOS OF NONLINEAR STRUCTURES WITH CONTROL .1. AUTONOMOUS CASE

被引:23
作者
HACKL, K
YANG, CY
CHENG, AHD
机构
[1] UNIV DELAWARE,DEPT MATH SCI,NEWARK,DE 19716
[2] UNIV DELAWARE,DEPT CIVIL ENGN,NEWARK,DE 19716
关键词
D O I
10.1016/0020-7462(93)90018-G
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study a class of structural models with non-linear soft spring and active control subjected to simple harmonic excitations. The first of the two parts deals with the analysis of stability and bifurcations of the autonomous (or unforced) system, using the basic concept of Liapunov exponent, the center manifold theorem, normal forms, the Melnikov method, the Bendixon criterion and perturbation methods. Regions of stability and bifurcation sequences in the parameter space of the system are obtained analytically along with those by numerical simulations. Part II of our study concentrates on the analysis of stability and chaos of the non-autonomous (or forced) system.
引用
收藏
页码:441 / 454
页数:14
相关论文
共 24 条
[1]  
Bogdanov R. I., 1975, FUNCT ANAL APPL+, V9, P144
[2]  
CHENG AHD, IN PRESS IN J NONLIN
[3]  
Chong K. P., 1990, INTELLIGENT STRUCTUR
[4]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[5]   DYNAMICS OF A NONLINEAR OSCILLATOR WITH FEEDBACK-CONTROL .1. LOCAL ANALYSIS [J].
HOLMES, P .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1985, 107 (02) :159-165
[6]   STRANGE ATTRACTORS AND CHAOS IN NON-LINEAR MECHANICS [J].
HOLMES, PJ ;
MOON, FC .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1983, 50 (4B) :1021-1032
[7]   CHAOTIC STATES OF ANHARMONIC SYSTEMS IN PERIODIC FIELDS [J].
HUBERMAN, BA ;
CRUTCHFIELD, JP .
PHYSICAL REVIEW LETTERS, 1979, 43 (23) :1743-1747
[8]  
Leipholz H.H., 1986, CONTROL STRUCTURES
[9]  
LEIPHOLZ HH, 1979, P INT IUTAM S STRUCT
[10]  
LEIPHOLZ HH, 1985, 2ND P INT S STRUCT C