NEW LOWER BOUNDS FOR THE SYMMETRIC TRAVELING SALESMAN PROBLEM

被引:14
作者
CARPANETO, G [1 ]
FISCHETTI, M [1 ]
TOTH, P [1 ]
机构
[1] UNIV BOLOGNA,DEIS,I-40126 BOLOGNA,ITALY
关键词
D O I
10.1007/BF01589105
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
引用
收藏
页码:233 / 254
页数:22
相关论文
共 25 条
[1]  
Aho A. V., 1974, DESIGN ANAL COMPUTER
[2]   A RESTRICTED LAGRANGEAN APPROACH TO THE TRAVELING SALESMAN PROBLEM [J].
BALAS, E ;
CHRISTOFIDES, N .
MATHEMATICAL PROGRAMMING, 1981, 21 (01) :19-46
[3]  
Carpaneto G., 1988, Annals of Operations Research, V13, P193
[4]  
CARPANETO G, 1989, NETWORKS, V19
[5]   SHORTEST HAMILTONIAN CHAIN OF A GRAPH [J].
CHRISTOFIDES, N .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1970, 19 (04) :689-+
[6]  
Dijkstra E. W., 1959, NUMER MATH, V1, P269, DOI DOI 10.1007/BF01386390
[7]   OPTIMUM BRANCHINGS [J].
EDMONDS, J .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1967, B 71 (04) :233-+
[8]   AN ADDITIVE BOUNDING PROCEDURE FOR COMBINATORIAL OPTIMIZATION PROBLEMS [J].
FISCHETTI, M ;
TOTH, P .
OPERATIONS RESEARCH, 1989, 37 (02) :319-328
[9]  
FISCHETTI M, 1987, OR877 DEIS U BOL TEC
[10]  
FISCHETTI M, 1890, UNPUB MATH PROGRAMMI