NEW LOWER BOUNDS FOR THE SYMMETRIC TRAVELING SALESMAN PROBLEM

被引:14
作者
CARPANETO, G [1 ]
FISCHETTI, M [1 ]
TOTH, P [1 ]
机构
[1] UNIV BOLOGNA,DEIS,I-40126 BOLOGNA,ITALY
关键词
D O I
10.1007/BF01589105
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
引用
收藏
页码:233 / 254
页数:22
相关论文
共 25 条
[11]  
Fischetti M., 1988, VEHICLE ROUTING METH, P319
[12]   AN OPTIMAL SOLUTION METHOD FOR LARGE-SCALE MULTIPLE TRAVELING SALESMEN PROBLEMS [J].
GAVISH, B ;
SRIKANTH, K .
OPERATIONS RESEARCH, 1986, 34 (05) :698-717
[13]  
HANSEN KH, 1974, MATH PROGRAM, V7, P87
[14]   TRAVELING-SALESMAN PROBLEM AND MINIMUM SPANNING TREES [J].
HELD, M ;
KARP, RM .
OPERATIONS RESEARCH, 1970, 18 (06) :1138-&
[15]  
Held M, 1971, MATHEMATICAL PROGRAM, V1, P6, DOI [DOI 10.1007/BF01584070, 10.1007/BF01584070]
[16]  
Kruskal J. B., 1956, P AM MATH SOC, V7, P48, DOI [10.2307/2033241, DOI 10.1090/S0002-9939-1956-0078686-7]
[17]  
Lawler E. L., 1985, TRAVELING SALESMAN P
[18]  
Lawler EL, 1976, COMBINATORIAL OPTIMI
[19]   OPTIMIZATION OF A 532-CITY SYMMETRICAL TRAVELING SALESMAN PROBLEM BY BRANCH AND CUT [J].
PADBERG, M ;
RINALDI, G .
OPERATIONS RESEARCH LETTERS, 1987, 6 (01) :1-7
[20]  
Padberg M., 1985, TRAVELING SALESMAN P