THE STRONG ERGODIC THEOREM FOR DENSITIES - GENERALIZED SHANNON-MCMILLAN-BREIMAN THEOREM

被引:143
作者
BARRON, AR [1 ]
机构
[1] STANFORD UNIV, STANFORD, CA 94305 USA
关键词
D O I
10.1214/aop/1176992813
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:1292 / 1303
页数:12
相关论文
共 26 条
[1]  
Bahadur RR, 1971, SOME LIMIT THEOREMS
[2]   THE INDIVIDUAL ERGODIC THEOREM OF INFORMATION-THEORY [J].
BREIMAN, L .
ANNALS OF MATHEMATICAL STATISTICS, 1957, 28 (03) :809-811
[3]  
BREIMAN L, 1960, ANN MATH STAT, V31, P809, DOI 10.1214/aoms/1177705812
[4]  
Carleson L., 1958, MATH SCAND, V6, P175
[5]   LARGE-SAMPLE THEORY - PARAMETRIC CASE [J].
CHERNOFF, H .
ANNALS OF MATHEMATICAL STATISTICS, 1956, 27 (01) :1-22
[6]  
CHUNG KL, 1961, ANN MATH STAT, V32, P612, DOI 10.1214/aoms/1177705069
[7]  
CHUNG KL, 1962, RECENT DEV INFORMATI, P141
[8]  
Doob J. L., 1953, STOCHASTIC PROCESSES
[9]   ASYMPTOTICALLY MEAN STATIONARY MEASURES [J].
GRAY, RM ;
KIEFFER, JC .
ANNALS OF PROBABILITY, 1980, 8 (05) :962-973
[10]   MUTUAL INFORMATION RATE, DISTORTION, AND QUANTIZATION IN METRIC-SPACES [J].
GRAY, RM ;
KIEFFER, JC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1980, 26 (04) :412-422