SPLATTERING DURING TURBULENT LIQUID JET IMPINGEMENT ON SOLID TARGETS

被引:44
作者
BHUNIA, SK
LIENHARD, JH
机构
[1] W. M. Rohsenow Heat and Mass Transfer Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA
来源
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME | 1994年 / 116卷 / 02期
关键词
Drop breakup;
D O I
10.1115/1.2910277
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In turbulent liquid jet impingement, a spray of droplets often breaks off of the liquid layer formed on the target. This splattering of liquid alters the efficiencies of jet impingement heat transfer processes and chemical containment safety devices, and leads to problems of aerosol formation in jet impingement cleaning processes. In this paper, we present a more complete study of splattering and improved correlations that extend and supersede our previous reports on this topic. We report experimental results on the amount of splattering for jets of water, isopropanol-water solutions, and soap-water mixtures. Jets were produced by straight tube nozzles of diameter 0.8-5.8 mm, with fully developed turbulent pipe-flow upstream of the nozzle exit. These experiments cover Weber numbers between 130-31,000, Reynolds numbers between 2700-98,000, and nozzle-to-target separations of 0.2 less-than-or-equal-to l/d less-than-or-equal-to 125. Splattering of up to 75 percent of the incoming jet liquid is observed. The results show that only the Weber number and l/d affect the fraction of jet liquid splattered. The presence of surfactants does not alter the splattering. A new correlation for the onset condition for splattering is given. In addition, we establish the range of applicability of the model of Lienhard et al. (1992) and we provide a more accurate set of coefficients for their correlation.
引用
收藏
页码:338 / 344
页数:7
相关论文
共 14 条
[1]  
BHUNIA SK, 1993, AICHE SYM S, V89, P1
[2]  
CHEN TF, 1964, J HYDRAULICS DIVISIO, V1, P17
[3]  
Drazin P.G., 2004, HYDRODYNAMIC STABILI, DOI [10.1017/CBO9780511616938, DOI 10.1017/CBO9780511616938]
[4]  
Errico, 1986, PREV SCH FAIL, V51, P49
[5]  
KOHLER J, 1993, HEAT MASS TRANSFER 2
[6]  
LAUFER J, 1954, NACA1174 TECHN REP
[7]   SPLATTERING AND HEAT-TRANSFER DURING IMPINGEMENT OF A TURBULENT LIQUID JET [J].
LIENHARD, JH ;
LIU, X ;
GABOUR, LA .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1992, 114 (02) :362-372
[8]  
LIENHARD JH, 1970, J BASIC ENG, P515
[9]   CORRELATION OF EXPERIMENTAL DATA ON THE DISINTEGRATION OF LIQUID JETS [J].
MIESSE, CC .
INDUSTRIAL AND ENGINEERING CHEMISTRY, 1955, 47 (09) :1690-1701
[10]  
STEVENS J, 1989, ASME HTD, V111, P113