STRATEGIES FOR THE DEVELOPMENT OF DRUGS FOR PHARMACORESISTANT EPILEPSIES

被引:41
作者
HEINEMANN, U
DRAGUHN, A
FICKER, E
STABEL, J
ZHANG, CL
机构
[1] Instilul für Physiologic der Charlié, Humboldt Universität, Berlin
关键词
ANTICONVULSANTS; EPILEPSY; CLINICAL TRIALS;
D O I
10.1111/j.1528-1157.1994.tb05959.x
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Presently, most strategies for development of antiepileptic drugs (AEDs) center around seizure models that are known to respond to presently marketed AEDs. These strategies do not take into account that epilepsy can be a progressive disease. Moreover, region-specific aspects of epileptogenesis are rarely considered when new AEDs are developed. Seizures in the temporal lobe are often difficult to treat. Animal studies on various seizure models in the hippocampus and the entorhinal cortex (EC) suggest that these structures do not a priori produce seizures that are difficult to treat. However, seizure-like events in the EC tend to progress to a state of status epilepticus-like activity that cannot be suppressed by presently marketed AEDs. Loss of gamma-aminobutyric acid (GABA)ergic neurotransmission and increased excitatory synaptic coupling seem to cooperate for induction of this state. Epilepsy induced alterations in the interaction between the EC and the hippocampus may lead to alterations that facilitate precipitation of seizures. Because of the recurrent interaction between the hippocampus and the EC, these seizures may reach an intensity that is no longer controllable by presently available AEDs. Ontogenetic alterations of the circuitry between the EC and the hippocampus, seizure-induced stabilization of synaptic connections overexpressed during ontogenesis, seizure-induced lesions and subsequent rearrangements of internal cell properties, and synaptic arrangements and kindling-like alterations of nerve cell and glial behavior may all be involved in the generation of a neuronal aggregate whose balance between inhibitory and excitatory processes becomes readily disturbed. Strategies for the development of AEDs treating such seizures should suppress hyperactivity and prevent progression of epileptogenesis. AEDs directed against seizures may be effective if they can be given in sufficient concentrations to suppress very intense local seizures.
引用
收藏
页码:S10 / S21
页数:12
相关论文
共 100 条
[1]   LOW CALCIUM-INDUCED EPILEPTIFORM ACTIVITY IN HIPPOCAMPAL SLICES FROM INFANT RATS [J].
ALBRECHT, D ;
HEINEMANN, U .
DEVELOPMENTAL BRAIN RESEARCH, 1989, 48 (02) :316-320
[2]   SUBTHRESHOLD NA+-DEPENDENT THETA-LIKE RHYTHMICITY IN STELLATE CELLS OF ENTORHINAL CORTEX LAYER-II [J].
ALONSO, A ;
LLINAS, RR .
NATURE, 1989, 342 (6246) :175-177
[3]   NEURONAL SOURCES OF THETA RHYTHM IN THE ENTORHINAL CORTEX OF THE RAT .1. LAMINAR DISTRIBUTION OF THETA FIELD POTENTIALS [J].
ALONSO, A ;
GARCIAAUSTT, E .
EXPERIMENTAL BRAIN RESEARCH, 1987, 67 (03) :493-501
[4]   TRANSIENT AND SELECTIVE BLOCKADE OF ADENOSINE A1-RECEPTORS BY 8-CYCLOPENTYL-1,3-DIPROPYLXANTHINE (DPCPX) CAUSES SUSTAINED EPILEPTIFORM ACTIVITY IN HIPPOCAMPAL CA3 NEURONS OF GUINEA-PIGS [J].
ALZHEIMER, C ;
SUTOR, B ;
TENBRUGGENCATE, G .
NEUROSCIENCE LETTERS, 1989, 99 (1-2) :107-112
[5]  
ANDERSEN P, 1968, PHYSL BASIS ALPHA RH
[6]   MAGNESIUM-FREE MEDIUM ACTIVATES SEIZURE-LIKE EVENTS IN THE RAT HIPPOCAMPAL SLICE [J].
ANDERSON, WW ;
LEWIS, DV ;
SWARTZWELDER, HS ;
WILSON, WA .
BRAIN RESEARCH, 1986, 398 (01) :215-219
[7]   INTRINSIC-PROPERTIES OF NUCLEUS RETICULARIS THALAMI NEURONS OF THE RAT STUDIED INVITRO [J].
AVANZINI, G ;
DECURTIS, M ;
PANZICA, F ;
SPREAFICO, R .
JOURNAL OF PHYSIOLOGY-LONDON, 1989, 416 :111-122
[8]   SYNAPTIC REORGANIZATION BY MOSSY FIBERS IN HUMAN EPILEPTIC FASCIA-DENTATA [J].
BABB, TL ;
KUPFER, WR ;
PRETORIUS, JK ;
CRANDALL, PH ;
LEVESQUE, MF .
NEUROSCIENCE, 1991, 42 (02) :351-363
[9]  
BABB TL, 1992, DENDRON, V1, P7
[10]   HIPPOCAMPAL CALCIUM-BINDING PROTEIN DURING COMMISSURAL KINDLING-INDUCED EPILEPTOGENESIS - PROGRESSIVE DECLINE AND EFFECTS OF ANTICONVULSANTS [J].
BAIMBRIDGE, KG ;
MILLER, JJ .
BRAIN RESEARCH, 1984, 324 (01) :85-90