NON-MARKOVIAN INVARIANT-MEASURES ARE HYPERBOLIC

被引:12
作者
CRAUEL, H
机构
[1] Fachbereich 9 Mathematik, Universität des Saarlandes, Saarbrücken
关键词
D O I
10.1016/0304-4149(93)90057-B
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Suppose mu is an invariant measure for a smooth random dynamical system on a d-dimensional Riemannian manifold. We prove that alpha(mu) less-than-or-equal-to dE(mu)(max{0, -lambda(d)mu}), where alpha(mu) is the relative entropy of mu, lambda(d)mu is the smallest Lyapunov exponent associated with mu, and E(mu) denotes integration with respect to mu.
引用
收藏
页码:13 / 28
页数:16
相关论文
共 15 条
[1]  
BAXENDALE P, 1989, PROBAB THEORY REL, V81, P522
[2]  
Bougerol P., 1985, PRODUCTS RANDOM MATR
[3]  
Crauel H., 1991, Stochastics and Stochastics Reports, V37, P153, DOI 10.1080/17442509108833733
[4]  
CRAUEL H, 1991, LECT NOTES MATH, V1486, P38
[5]  
CRAUEL H, 1987, THESIS U BREMEN BREM
[6]  
CRAUEL H, 1990, J DYNAMICS DIFFERENT, V2, P245
[7]  
Gromov M., 1986, PARTIAL DIFFERENTIAL
[8]  
KIFER Y, 1988, LECT NOTES MATH, V1325, P125
[9]  
KINGMAN JFC, 1968, J ROY STAT SOC B, V30, P499
[10]  
KLINGENBERG W, 1982, RIEMANNIAN GEOMETRY