BENDING AND SHEAR DAMPING IN BEAMS - FREQUENCY-DOMAIN ESTIMATION TECHNIQUES

被引:21
作者
BANKS, HT
WANG, Y
INMAN, DJ
机构
[1] Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC
[2] Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA
来源
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME | 1994年 / 116卷 / 02期
关键词
D O I
10.1115/1.2930411
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper we consider damping mechanisms in the context of dynamic beam models. We summarize previous efforts on various damping models (strain rate or Kelvin-Voigt, time hysteresis (Boltzmann), spatial hysteresis, bending rate/square root) for the Euler-Bernoulli beam theory. The Euler-Bernoulli theorY is known to be inadequate for experiments in which high frequency modes have been excited. In such cases the Timoshenko theory may be more appropriate; we consider a number of damping hypotheses for this theory. Corresponding models are proposed and compared to experimental data in the context of parameter estimation or identification problems formulated in the frequency domain. Theoretical results related to the convergence of approximations to these infinite dimensional distributed parameter system estimation problems are presented. Associated computational findings for specific beam experiments are discussed.
引用
收藏
页码:188 / 197
页数:10
相关论文
共 20 条
[1]  
Banks H.T., On a Variational Approach to Some Parameter Estimation Problems, Distributed Parameter Systems, 75, pp. 1-23, (1985)
[2]  
Banks H.T., Gates S., Rosen I.G., Wang Y., The Identification of a Distributed Parameter Model for a Flexible Structure, 1CASE Report 86-71, (1988)
[3]  
Banks H.T., Gates S., Rosen I.G., Wang Y., SIAM Journal on Control &Optimization, 26, pp. 743-762
[4]  
Banks H.T., Fabiano R.H., Wang Y., Inman D.J., Cudney H., Spatial versus Time Hysteresis in Damping Mechanisms, Proc. 27Th IEEE Conf Dec. And Control, pp. 1674-1677, (1988)
[5]  
Banks H.T., Inman D.J., Significance of Modeling Internal Damping in the Control of Structures, AIAA J. Guidance, Control and Dynamics, 15, pp. 1509-1512, (1988)
[6]  
Banks H.T., Ito K., A Unified Framework for Approximation in Inverse Problems for Distributed Parameter Systems, Control-Theory and Advanced Technology, 4, pp. 73-90, (1988)
[7]  
Banks H.T., Kunisch K., Estimation Techniques for Distributed Parameter Systems, (1989)
[8]  
Banks H.T., Rebnord D.A., Analytic Semigroups: Applications to Inverse Problems for Flexible Structures, Differential Equations with Applications, pp. 21-35, (1991)
[9]  
Banks H.T., Wang Y., Fabiano R.H., Bending Rate Damping in Elastic Systems, Proc. 28Th IEEE Conf. Dec. And Control, pp. 604-607, (1989)
[10]  
Banks H.T., Wang Y., Inman D.J., Cudney H., Parameter Identification Techniques for the Estimation of Damping in Flexible Structure Experiments, Proc. 26Th IEEE Conf. Dec. And Control, pp. 1392-1395, (1987)