COUPLED QUARTIC ANHARMONIC-OSCILLATORS, PAINLEVE ANALYSIS, AND INTEGRABILITY

被引:52
作者
LAKSHMANAN, M [1 ]
SAHADEVAN, R [1 ]
机构
[1] BHARATHIDASAN UNIV,DEPT PHYS,TIRUCHIRAPALLI 620023,TAMIL NADU,INDIA
来源
PHYSICAL REVIEW A | 1985年 / 31卷 / 02期
关键词
D O I
10.1103/PhysRevA.31.861
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
引用
收藏
页码:861 / 876
页数:16
相关论文
共 29 条
[1]   NON-LINEAR EVOLUTION EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF PAINLEVE TYPE [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
LETTERE AL NUOVO CIMENTO, 1978, 23 (09) :333-338
[2]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .1. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) :715-721
[3]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, DOI DOI 10.1137/1.9781611970883
[4]   THE COMPLETE WHITTAKER THEOREM FOR TWO-DIMENSIONAL INTEGRABLE SYSTEMS AND ITS APPLICATION [J].
ANKIEWICZ, A ;
PASK, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (18) :4203-4208
[5]   INTEGRABLE HAMILTONIAN-SYSTEMS AND THE PAINLEVE PROPERTY [J].
BOUNTIS, T ;
SEGUR, H ;
VIVALDI, F .
PHYSICAL REVIEW A, 1982, 25 (03) :1257-1264
[6]  
BUTTNER H, 1982, J PHYS C SOLID STATE, V6, P111
[7]   ANALYTIC STRUCTURE OF THE HENON-HEILES HAMILTONIAN IN INTEGRABLE AND NON-INTEGRABLE REGIMES [J].
CHANG, YF ;
TABOR, M ;
WEISS, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (04) :531-538
[8]   THE ANALYTIC STRUCTURE OF DYNAMICAL-SYSTEMS AND SELF-SIMILAR NATURAL BOUNDARIES [J].
CHANG, YF ;
GREENE, JM ;
TABOR, M ;
WEISS, J .
PHYSICA D, 1983, 8 (1-2) :183-207
[9]   THEORETICAL PERIODIC-ORBITS IN 3-DIMENSIONAL HAMILTONIANS [J].
CONTOPOULOS, G .
PHYSICA D, 1984, 11 (1-2) :179-192
[10]   A NEW CLASS OF INTEGRABLE SYSTEMS [J].
DORIZZI, B ;
GRAMMATICOS, B ;
RAMANI, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (09) :2282-2288