A FICTITIOUS DOMAIN METHOD FOR DIRICHLET PROBLEM AND APPLICATIONS

被引:372
作者
GLOWINSKI, R
PAN, TW
PERIAUX, J
机构
[1] UNIV PARIS 06,F-75230 PARIS 05,FRANCE
[2] DASSAULT AVIAT,F-92214 ST CLOUD,FRANCE
基金
美国国家科学基金会;
关键词
D O I
10.1016/0045-7825(94)90135-X
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article we discuss the solution of the Dirichlet problem for a class of elliptic operators by a Lagrange multiplier/fictitious domain method. This approach allows the use of regular grids and therefore of fast specialized solvers for problems on complicated geometries; the resulting saddle-point system can be solved by an Uzawa/conjugate gradient algorithm. In the case of two-dimensional problems, a quasi-optimal preconditioner has been found by Fourier analysis and numerical experiments confirm its nice scaling properties. The resulting methodology is applied to a nonlinear time dependent problem, namely the flow of a viscous-plastic medium in a cylindrical pipe showing the potential of this methodology for some classes of nonlinear problems.
引用
收藏
页码:283 / 303
页数:21
相关论文
共 30 条
[1]  
Astrachancev G.P., 1978, USSR COMP MATH MATH, V18, P114
[2]   DOMAIN IMBEDDING METHODS FOR THE STOKES EQUATIONS [J].
BORGERS, C .
NUMERISCHE MATHEMATIK, 1990, 57 (05) :435-451
[3]  
BREZIS H, 1971, CONTRIBUTIONS NONLIN, P101
[4]  
Brezzi F., 1991, MIXED HYBRID FINITE, DOI 10.1007/978-1-4612-3172-1
[5]  
BUNEMAN O, 1969, 294 STANF U I PLASM
[6]  
BUSSOLETTI JE, 1991, COMPUTER METHODS APP, P49
[7]   DIRECT SOLUTION OF DISCRETE POISSON EQUATION ON IRREGULAR REGIONS [J].
BUZBEE, BL ;
DORR, FW ;
GEORGE, JA ;
GOLUB, GH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1971, 8 (04) :722-&
[8]  
DEAN EJ, 1992, CR ACAD SCI I-MATH, V314, P153
[9]  
DINH QV, 1992, DOMAIN DECOMPOSITION, P151
[10]  
Duvaut G., 1972, INEQUATIONS MECANIQU