A SHARP PARTITIONING-INEQUALITY FOR NONATOMIC PROBABILITY-MEASURES BASED ON THE MASS OF THE INFIMUM OF THE MEASURES

被引:3
作者
HILL, TP
机构
关键词
D O I
10.1007/BF00320087
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:143 / 147
页数:5
相关论文
共 10 条
[1]  
DEMKO S, 1985, EQUITABLE DISTRIBUTI
[2]   HOW TO CUT A CAKE FAIRLY [J].
DUBINS, LE ;
SPANIER, EH .
AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (01) :1-&
[3]  
Dvoretzky A, 1951, PAC J MATH, V1, P59
[4]   OPTIMAL-PARTITIONING INEQUALITIES FOR NONATOMIC PROBABILITY-MEASURES [J].
ELTON, J ;
HILL, TP ;
KERTZ, RP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 296 (02) :703-725
[5]   A GENERALIZATION OF LYAPOUNOV CONVEXITY THEOREM TO MEASURES WITH ATOMS [J].
ELTON, J ;
HILL, TP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 99 (02) :297-304
[6]  
HILL T, 1987, IN PRESS ANN PROB
[7]   EQUIPARTITIONING COMMON DOMAINS OF NON-ATOMIC MEASURES [J].
HILL, TP .
MATHEMATISCHE ZEITSCHRIFT, 1985, 189 (03) :415-419
[8]  
LEGUT J, 1987, IN PRESS MATH Z
[9]  
NEYMAN J, 1946, CR HEBD ACAD SCI, V222, P843
[10]  
URBANIK K, 1955, FUND MATH, V41, P150