EXISTENCE THEOREM FOR ABEL INTEGRAL-EQUATIONS

被引:31
作者
ATKINSON, KE [1 ]
机构
[1] UNIV IOWA,DEPT MATH,IOWA CITY,IA 52240
关键词
D O I
10.1137/0505071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:729 / 736
页数:8
相关论文
共 12 条
[1]   NUMERICAL-SOLUTION OF AN ABEL INTEGRAL-EQUATION BY A PRODUCT TRAPEZOIDAL METHOD [J].
ATKINSON, KE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1974, 11 (01) :97-101
[2]  
BENSON MP, 1973, THESIS U WISCONSIN
[3]   NUMERICAL METHOD FOR TREATING INDENTATION PROBLEMS [J].
LINZ, P ;
NOBLE, B .
JOURNAL OF ENGINEERING MATHEMATICS, 1971, 5 (03) :227-&
[4]  
LINZ P, 1967, 826 U WISC MATH RES
[5]   INVERSION OF ABELS INTEGRAL EQUATION BY MEANS OF ORTHOGONAL POLYNOMIALS [J].
MINERBO, GN ;
LEVY, ME .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1969, 6 (04) :598-&
[6]  
NOBLE B, 1971, 1177 U WISC MATH RES
[7]  
NOBLE B, 1971, 1176 U WISC MATH RES
[8]  
NOBLE B, 1970, NUMERICAL SOLUTION V
[9]  
SCHMEIDLER W, 1950, INTEGRALGLEICHUNGEN
[10]  
Sneddon I. N., 1966, MIXED BOUNDARY VALUE