TRINUCLEOTIDE REPEATS IN NEUROLOGIC DISEASES - AN HYPOTHESIS CONCERNING THE PATHOGENESIS OF HUNTINGTONS-DISEASE, KENNEDYS DISEASE, AND SPINOCEREBELLAR ATAXIA TYPE-I

被引:30
作者
CHA, JHJ [1 ]
DURE, LS [1 ]
机构
[1] MASSACHUSETTS GEN HOSP,BOSTON,MA 02114
关键词
TRINUCLEOTIDE REPEAT; GENETIC ABNORMALITIES; HUNTINGTONS DISEASE; KENNEDYS DISEASE;
D O I
10.1016/0024-3205(94)90012-4
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Three neurodegenerative diseases, Huntington's disease (HD), Kennedy's disease (hereditary spinobulbar muscular atrophy, SBMA), and type 1 spinocerebellar ataxia (SCA-1) have been found to share a common genetic defect: an unstable region of repeated CAG trinucleotides which are thought to be translated into a polyglutamine moiety. The unstable repeat regions occur near the N-termini of the predicted proteins for HD and SBMA, but the location of the CAG repeat region is not known for SCA-1. Each disease is notable for a relatively circumscribed region of central nervous system pathology, and the lack of predicted similarity of the abnormal proteins makes a common mechanism related to the function of each protein unlikely. In order to reconcile the similar genetic abnormalities with the disparities in phenotypes, we suggest a common thread with regard to the pathogenesis of neuronal death. We hypothesize that the mechanism of neurotoxicity in these diseases occurs not through the production of abnormal proteins, but by the generation of abnormal posttranslational cleavage products. These products, in part consisting of abnormally large polyglutamine moieties, act to disturb the cellular and mitochondrial milieu such that energy metabolism is impaired, rendering specific regions of the nervous system vulnerable, and resulting in the clinical phenotypes of HD, SBMA, and SCA-1. We offer this interpretation of recent genetic findings from a neurobiologic perspective, in addition to suggesting testable hypotheses concerning potential disease mechanisms.
引用
收藏
页码:1459 / 1464
页数:6
相关论文
共 40 条
[1]   ALTERNATIVE EXCITOTOXIC HYPOTHESES [J].
ALBIN, RL ;
GREENAMYRE, JT .
NEUROLOGY, 1992, 42 (04) :733-738
[2]   STRIATAL AND NIGRAL NEURON SUBPOPULATIONS IN RIGID HUNTINGTONS-DISEASE - IMPLICATIONS FOR THE FUNCTIONAL-ANATOMY OF CHOREA AND RIGIDITY-AKINESIA [J].
ALBIN, RL ;
REINER, A ;
ANDERSON, KD ;
PENNEY, JB ;
YOUNG, AB .
ANNALS OF NEUROLOGY, 1990, 27 (04) :357-365
[3]  
[Anonymous], EXCITATORY AMINO ACI
[4]   DOES IMPAIRMENT OF ENERGY-METABOLISM RESULT IN EXCITOTOXIC NEURONAL DEATH IN NEURODEGENERATIVE ILLNESSES [J].
BEAL, MF .
ANNALS OF NEUROLOGY, 1992, 31 (02) :119-130
[5]   MECHANISMS OF EXCITOTOXICITY IN NEUROLOGIC DISEASES [J].
BEAL, MF .
FASEB JOURNAL, 1992, 6 (15) :3338-3344
[6]   AMINOOXYACETIC ACID RESULTS IN EXCITOTOXIN LESIONS BY A NOVEL INDIRECT MECHANISM [J].
BEAL, MF ;
SWARTZ, KJ ;
HYMAN, BT ;
STOREY, E ;
FINN, SF ;
KOROSHETZ, W .
JOURNAL OF NEUROCHEMISTRY, 1991, 57 (03) :1068-1073
[7]   OLIVOPONTOCEREBELLAR ATROPHY - A REVIEW OF 117 CASES [J].
BERCIANO, J .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 1982, 53 (02) :253-272
[8]   AGE-DEPENDENT VULNERABILITY OF THE STRIATUM TO THE MITOCHONDRIAL TOXIN 3-NITROPROPIONIC ACID [J].
BROUILLET, E ;
JENKINS, BG ;
HYMAN, BT ;
FERRANTE, RJ ;
KOWALL, NW ;
SRIVASTAVA, R ;
ROY, DS ;
ROSEN, BR ;
BEAL, MF .
JOURNAL OF NEUROCHEMISTRY, 1993, 60 (01) :356-359
[9]   TRIPLET REPEAT MUTATIONS IN HUMAN-DISEASE [J].
CASKEY, CT ;
PIZZUTI, A ;
FU, YH ;
FENWICK, RG ;
NELSON, DL .
SCIENCE, 1992, 256 (5058) :784-789
[10]   SYNERGISTIC ACTIVATION BY THE GLUTAMINE-RICH DOMAINS OF HUMAN TRANSCRIPTION FACTOR SP1 [J].
COUREY, AJ ;
HOLTZMAN, DA ;
JACKSON, SP ;
TJIAN, R .
CELL, 1989, 59 (05) :827-836