REQUIREMENT OF MOSXE PROTEIN-KINASE FOR MEIOTIC MATURATION OF XENOPUS OOCYTES INDUCED BY A CDC2 MUTANT LACKING REGULATORY PHOSPHORYLATION SITES

被引:31
作者
PICKHAM, KM
MEYER, AN
LI, JK
DONOGHUE, DJ
机构
[1] UNIV CALIF SAN DIEGO,DEPT CHEM,DIV BIOCHEM,LA JOLLA,CA 92093
[2] UNIV CALIF SAN DIEGO,CTR MOLEC GENET,LA JOLLA,CA 92093
关键词
D O I
10.1128/MCB.12.7.3192
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The p34cdc2 protein kinase is a component of maturation-promoting factor, the master regulator of the cell cycle in all eukaryotes. The activity of p34cdc2 is itself tightly regulated by phosphorylation and dephosphorylation. Predicted regulatory phosphorylation sites of Xenopus p34cdc2 were mutated in vitro, and in vitro-transcribed RNAs were injected into Xenopus oocytes. The cdc2 single mutants Thr-14-->Ala and Tyr-15-->Phe did not induce germinal vesicle breakdown (GVBD) upon microinjection into oocytes. In contrast, the cdc2 double mutant Ala-14/Phe-15 did induce GVBD. Both the Ala-14 and Ala-14/Phe-15 p34cdc2 mutants were shown to coimmunoprecipitate cyclin B1 and to phosphorylate histone H1 in immune complex kinase assays. Microinjection of antisense oligonucleotides to c-mos(Xe) was used to demonstrate the role of mos protein synthesis in the induction of GVBD by the Ala-14/Phe-15 cdc2 mutant. Thr-161 was also mutated. p34cdc2 single mutants Ala-161 and Glu-161 and triple mutants Ala-14/Phe-15/Ala-161 and Ala-14/Phe-15/Glu-161 failed to induce GVBD in oocytes and showed a decreased binding to cyclin B1 in coimmunoprecipitations. Each of the cdc2 mutants was also assayed by coinjection with cyclin B1 or c-mos(XE) RNA into oocytes. Several of the cdc2 mutants were found to affect the kinetics of cyclin B1 and/or mos-induced GVBD upon coinjection, although none affected the rate of progesterone-induced maturation. We demonstrate here the significance of Thr-14, Tyr-15, and Thr-161 of p34cdc2 in Xenopus oocyte maturation. In addition, these results suggest a regulatory role for mos(Xe) in induction of oocyte maturation by the cdc2 mutant Ala-14/Phe-15.
引用
收藏
页码:3192 / 3202
页数:11
相关论文
共 67 条
[1]  
AMON A, 1992, NATURE, V335, P268
[2]   SITE-SPECIFIC MUTAGENESIS OF CDC2+, A CELL-CYCLE CONTROL GENE OF THE FISSION YEAST SCHIZOSACCHAROMYCES-POMBE [J].
BOOHER, R ;
BEACH, D .
MOLECULAR AND CELLULAR BIOLOGY, 1986, 6 (10) :3523-3530
[3]   THE STRUCTURE AND REGULATION OF PROTEIN PHOSPHATASES [J].
COHEN, P .
ANNUAL REVIEW OF BIOCHEMISTRY, 1989, 58 :453-508
[4]   A CHARACTERIZATION OF CYTOSTATIC FACTOR ACTIVITY FROM XENOPUS EGGS AND C-MOS-TRANSFORMED CELLS [J].
DAAR, I ;
PAULES, RS ;
VANDEWOUDE, GF .
JOURNAL OF CELL BIOLOGY, 1991, 114 (02) :329-335
[5]   CDC2 PHOSPHORYLATION IS REQUIRED FOR ITS INTERACTION WITH CYCLIN [J].
DUCOMMUN, B ;
BRAMBILLA, P ;
FELIX, MA ;
FRANZA, BR ;
KARSENTI, E ;
DRAETTA, G .
EMBO JOURNAL, 1991, 10 (11) :3311-3319
[7]   THE CDC25 PROTEIN CONTAINS AN INTRINSIC PHOSPHATASE-ACTIVITY [J].
DUNPHY, WG ;
KUMAGAI, A .
CELL, 1991, 67 (01) :189-196
[8]   THE XENOPUS CDC2 PROTEIN IS A COMPONENT OF MPF, A CYTOPLASMIC REGULATOR OF MITOSIS [J].
DUNPHY, WG ;
BRIZUELA, L ;
BEACH, D ;
NEWPORT, J .
CELL, 1988, 54 (03) :423-431
[9]   FISSION YEAST P13 BLOCKS MITOTIC ACTIVATION AND TYROSINE DEPHOSPHORYLATION OF THE XENOPUS CDC2 PROTEIN-KINASE [J].
DUNPHY, WG ;
NEWPORT, JW .
CELL, 1989, 58 (01) :181-191
[10]   FISSION YEAST P107WEE1 MITOTIC INHIBITOR IS A TYROSINE SERINE KINASE [J].
FEATHERSTONE, C ;
RUSSELL, P .
NATURE, 1991, 349 (6312) :808-811