A statistical measure of complexity

被引:745
作者
LopezRuiz, R
Mancini, HL
Calbet, X
机构
[1] UNIV PRIVADA NAVARRA,DEPT FIS,PAMPLONA,SPAIN
[2] INST ASTROFIS CANARIAS,E-38200 LA LAGUNA,TENERIFE,SPAIN
关键词
D O I
10.1016/0375-9601(95)00867-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A measure of complexity based on a probabilistic description of physical systems is proposed. This measure incorporates the main features of the intuitive notion of such a magnitude. It can be applied to many physical situations and to different descriptions of a given system. Moreover, the calculation of its value does not require a considerable computational effort in many cases of physical interest.
引用
收藏
页码:321 / 326
页数:6
相关论文
共 13 条
[1]  
ANDERSON PW, 1991, PHYSICS TODAY JUL
[2]  
BENNETT CH, 1988, EMERGING SYNTHESIS S
[3]  
CHAITIN G, 1990, INFORMATION RANDOMNE
[4]   TOWARD A QUANTITATIVE THEORY OF SELF-GENERATED COMPLEXITY [J].
GRASSBERGER, P .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1986, 25 (09) :907-938
[5]   COMPLEXITY AND ADAPTATION [J].
HUBERMAN, BA ;
HOGG, T .
PHYSICA D-NONLINEAR PHENOMENA, 1986, 22 (1-3) :376-384
[6]  
Kolmogorov A.N., 1965, PROBLEMY PEREDACHI I, V1, P3
[7]   COMPLEXITY OF FINITE SEQUENCES [J].
LEMPEL, A ;
ZIV, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1976, 22 (01) :75-81
[8]   COMPLEXITY AS THERMODYNAMIC DEPTH [J].
LLOYD, S ;
PAGELS, H .
ANNALS OF PHYSICS, 1988, 188 (01) :186-213
[9]  
Nicolis G., 1977, SELF ORG NONEQUILIBR
[10]  
PARISI G, 1993, PHYS WORLD, V6