COUPLED QUASI-PARTICLE-BOSON SYSTEMS - THE SEMICLASSICAL APPROXIMATION AND DISCRETE NONLINEAR SCHRODINGER-EQUATION

被引:38
作者
SALKOLA, MI [1 ]
BISHOP, AR [1 ]
KENKRE, VM [1 ]
RAGHAVAN, S [1 ]
机构
[1] UNIV NEW MEXICO, DEPT PHYS & ASTRON, ALBUQUERQUE, NM 87131 USA
关键词
D O I
10.1103/PhysRevB.52.R3824
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The validity of the semiclassical approximation is studied for a system comprising one quasiparticle coupled to a boson degree of freedom. Using a two-site Holstein model as an example, it is shown that the semiclassical approximation becomes exact in a nontrivial adiabatic limit. Furthermore, in the model's polaron regime, there exists a hierarchy of time scales that rationalizes the quantum dynamics of the Holstein model. For the single-mode case considered, the discrete nonlinear Schrodinger equation is found to be valid only in a highly limited antiadiabatic regime.
引用
收藏
页码:R3824 / R3827
页数:4
相关论文
共 22 条
[1]  
AGARWAL GS, 1974, QUANTUM STATISTICAL
[2]   QUANTUM CHAOS IN THE BORN-OPPENHEIMER APPROXIMATION - COMMENT [J].
ALLEGRINI, P ;
BONCI, L ;
GRIGOLINI, P ;
MANNELLA, R ;
RONCAGLIA, R ;
VITALI, D .
PHYSICAL REVIEW LETTERS, 1995, 74 (08) :1484-1484
[3]  
[Anonymous], 1987, OPTICAL RESONANCE 2
[4]   BEYOND THE SEMICLASSICAL APPROXIMATION OF THE DISCRETE NONLINEAR SCHRODINGER-EQUATION - COLLAPSES AND REVIVALS AS A SIGN OF QUANTUM FLUCTUATIONS [J].
BONCI, L ;
GRIGOLINI, P ;
VITALI, D .
PHYSICAL REVIEW A, 1990, 42 (08) :4452-4461
[5]   NONLINEAR SCHRODINGER-EQUATION AND WAVE-FUNCTION COLLAPSE - AN UNRELIABLE CONSEQUENCE OF THE SEMICLASSICAL APPROXIMATION [J].
BONCI, L ;
GRIGOLINI, P ;
RONCAGLIA, R ;
VITALI, D .
PHYSICAL REVIEW A, 1993, 47 (05) :3538-3545
[6]   NONLINEAR DENSITY-MATRIX EQUATION FOR THE STUDY OF FINITE-TEMPERATURE SOLITON DYNAMICS [J].
BROWN, DW ;
LINDENBERG, K ;
WEST, BJ .
PHYSICAL REVIEW B, 1987, 35 (12) :6169-6181
[7]   DAVYDOV SOLITONS - NEW RESULTS AT VARIANCE WITH STANDARD DERIVATIONS [J].
BROWN, DW ;
WEST, BJ ;
LINDENBERG, K .
PHYSICAL REVIEW A, 1986, 33 (06) :4110-4120
[8]  
Christiansen P. L., 1990, NATO ASI SERIES B
[9]  
FEINBERG D, 1984, PHYSICA D, V14, P29, DOI 10.1016/0167-2789(84)90003-4
[10]   STUDIES OF POLARON MOTION .1. THE MOLECULAR-CRYSTAL MODEL [J].
HOLSTEIN, T .
ANNALS OF PHYSICS, 1959, 8 (03) :325-342