FLEXIBLE DOCKING AND DESIGN

被引:110
作者
ROSENFELD, R
VAJDA, S
DELISI, C
机构
[1] Department of Biomedical Engineering, Boston University, Boston
来源
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE | 1995年 / 24卷
关键词
AUTOMATED MOLECULAR DOCKING; COMPUTER-AIDED DRUG DESIGN; EMPIRICAL FREE-ENERGY EVALUATION; PEPTIDE ANTIGEN MHC INTERACTION; PROTEASE INHIBITOR DESIGN;
D O I
10.1146/annurev.bb.24.060195.003333
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Docking and design are the major computational steps toward understanding and affecting receptor-ligand interactions. The flexibility of many ligands makes these calculations difficult and requires the development and use of special methods. The need for such tools is illustrated by two examples: the design of protease inhibitors and the analysis and design of peptide antigens binding to specific MHC receptors. We review the computational concepts that have been extended from rigid-body to flexible docking, as well as the following important strategies for flexible docking and design: (a) Monte Carlo/molecular dynamics docking, (b) in-site combinatorial search, (c) ligand build-up, and (d) site mapping and fragment assembly. The use of empirical free energy as a target function is discussed. Due to the rapid development of the methodology, most new methods have been tested on only a limited number of applications and are likely to improve results obtained by more traditional computational or graphic tools.
引用
收藏
页码:677 / 700
页数:24
相关论文
共 92 条
[1]   STRUCTURE-BASED DESIGN OF A CYCLOPHILIN-CALCINEURIN BRIDGING LIGAND [J].
ALBERG, DG ;
SCHREIBER, SL .
SCIENCE, 1993, 262 (5131) :248-250
[2]   DOCKING BY LEAST-SQUARES FITTING OF MOLECULAR-SURFACE PATTERNS [J].
BACON, DJ ;
MOULT, J .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 225 (03) :849-858
[3]   STRUCTURE OF THE HUMAN CLASS-I HISTOCOMPATIBILITY ANTIGEN, HLA-A2 [J].
BJORKMAN, PJ ;
SAPER, MA ;
SAMRAOUI, B ;
BENNETT, WS ;
STROMINGER, JL ;
WILEY, DC .
NATURE, 1987, 329 (6139) :506-512
[4]  
BLUNDELL TL, 1989, PERSPECTIVES BIOCH, P83
[5]   Ligand binding: proteinase protein inhibitor interactions [J].
Bode, Wolfram ;
Huber, Robert .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1991, 1 (01) :45-52
[6]  
BOHM HJ, 1992, J COMPUT AID MOL DES, V6, P131
[7]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[8]   PREDICTION OF THE FOLDING OF SHORT POLYPEPTIDE SEGMENTS BY UNIFORM CONFORMATIONAL SAMPLING [J].
BRUCCOLERI, RE ;
KARPLUS, M .
BIOPOLYMERS, 1987, 26 (01) :137-168
[9]   CONFORMATIONAL SAMPLING USING HIGH-TEMPERATURE MOLECULAR-DYNAMICS [J].
BRUCCOLERI, RE ;
KARPLUS, M .
BIOPOLYMERS, 1990, 29 (14) :1847-1862
[10]   MONTE-CARLO DOCKING OF OLIGOPEPTIDES TO PROTEINS [J].
CAFLISCH, A ;
NIEDERER, P ;
ANLIKER, M .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1992, 13 (03) :223-230