THE KOWALEWSKI AND HENON-HEILES MOTIONS AS MANAKOV GEODESIC-FLOWS ON SO(4) - A TWO-DIMENSIONAL FAMILY OF LAX PAIRS

被引:47
作者
ADLER, M [1 ]
VANMOERBEKE, P [1 ]
机构
[1] CATHOLIC UNIV LOUVAIN,DEPT MATH,B-1348 LOUVAIN LA NEUVE,BELGIUM
关键词
D O I
10.1007/BF01223242
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:659 / 700
页数:42
相关论文
共 32 条
[1]  
ADAMS M, UNPUB COMMUN MATH PH
[2]   GEODESIC-FLOW ON SO(4) AND THE INTERSECTION OF QUADRICS [J].
ADLER, M ;
VANMOERBEKE, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1984, 81 (14) :4613-4616
[3]  
ADLER M, 1986, ADV MATH S, V9, P81
[4]  
ADLER M, 1987, IN PRESS PERSPECTIVE
[5]  
ADLER M, 1987, MATH ANN, P1
[6]  
Arnold V. I, 1989, MATH METHODS CLASSIC, VSecond, DOI DOI 10.1007/978-1-4757-1693-1
[7]  
Barth W., 1987, ADV STUDIES PURE MAT, V10, P41
[8]  
BARTH W, 1987, MATH ANN
[9]   THE GORYACHEV-CHAPLYGIN TOP AND THE TODA LATTICE [J].
BECHLIVANIDIS, C ;
VANMOERBEKE, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 110 (02) :317-324
[10]   INTEGRABLE HAMILTONIAN-SYSTEMS AND THE PAINLEVE PROPERTY [J].
BOUNTIS, T ;
SEGUR, H ;
VIVALDI, F .
PHYSICAL REVIEW A, 1982, 25 (03) :1257-1264