13-NM EXTREME-ULTRAVIOLET LITHOGRAPHY

被引:12
作者
STULEN, RH
机构
[1] Sandia National Laboratories, Livermore
关键词
D O I
10.1109/2944.473686
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The National Technology Roadmap for Semiconductors projects the need for 0.1 micron lithography for leading-edge IC production, beginning in the year 2007. Reduction imaging using extreme ultraviolet light, one-to-one printing using X-rays, and advanced electron beam technologies are the front runners for use at this design rule. This paper describes research and development activities for projection printing using extreme ultraviolet lithography (EUVL). This approach, known as NX EUV, is the logical extension of optical projection lithography and offers many of its advantages, including robust mask technology and reduction printing while maintaining a large depth of focus (DOF) at modest K-factor. The development of this technology is now in the research and development phase. This paper reviews its current status and describes the budding blocks of a generic EUVL tool.
引用
收藏
页码:970 / 975
页数:6
相关论文
共 26 条
[1]  
The National Technology Roadmap for Semiconductors., (1994)
[2]  
Schenker R., Eichner L., Vaidya H., Vaidya S., Oldham W.G., Degradation of fused silica at 193-nm and 213-nm, Proc. SPIE Conf. Optical/Laser Microlithography VIII, 2440, pp. 118-125, (1995)
[3]  
Arnold W.H., Escher G.C., Wafer steppers for the 64 M and 256 Mbit memory generations, Proc. SPIE Symp. 64- to 256-Megabit Reticle Generation: Technol. Requirements Approaches, CR51, (1993)
[4]  
Windt D.L., Waskiewicz W.K., Multilayer facilities for EUV lithography, OSA Proc. Extreme Ultraviolet Lithography, 23, pp. 47-51, (1995)
[5]  
Stearns D.G., Rosen R.S., Vernon S.P., Fabrication of high-reflectance Mo-Si multilayer mirrors by planar-magnetron sputtering, J. Vac. Sci. Technol., A9, pp. 2662-2669, (1991)
[6]  
Hawryluk A.M., Seppala L.G., Soft X-ray projection lithography using an X-ray reduction camera, J. Vac. Sci. Technol., B6, pp. 2162-2166, (1988)
[7]  
Jewell T.E., Rodgers J.M., Thompson K.P., Reflective systems design study for soft X-ray projection lithography, J. Vac. Sci. Technol., B8, 6, pp. 1519-1523, (1990)
[8]  
Kinoshita H., Kurihara K., Ishii Y., Torii Y., Soft X-ray reduction lithography using multilayer mirrors, J. Vac. Sci. Technol., B7, pp. 1648-1651, (1989)
[9]  
Bjorkholm J.E., Bokor J., Eichner L., Freeman R.R., Jewell T.E., Mansfield W.M., MacDowell A.A., Raab E.L., Silfvast W.T., Szeto L.H., Tennant D.M., Waskiewicz W.K., White D.L., Windt D.L., Wood O.R., Bruning J.H., Reduction imaging at 14-nm using multilayer-coated optics: Printing of features smaller than 0.1 μm, J. Vac. Sci. Technol., B8, pp. 1509-1513, (1990)
[10]  
Tichenor D.A., Kubiak G.D., Malinowski M.E., Stulen R.H., Haney S.J., Berger K.W., Brown L.A., Freeman R.R., Mansfield W.M., Wood O.R., Tennant D.M., Bjorkholm J.E., MacDowell A.A., Bokor J., Jewell T.E., White D.L., Windt D.L., Waskiewicz W.K., Diffraction-limited soft X-ray projection imaging using a laser plasma source, Opt. Lett., 16, pp. 1557-1559, (1991)