ON AN ADAPTIVE GRID REFINING TECHNIQUE FOR FINITE-ELEMENT APPROXIMATIONS

被引:10
作者
JARAUSCH, H
机构
来源
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING | 1986年 / 7卷 / 04期
关键词
D O I
10.1137/0907075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1105 / 1120
页数:16
相关论文
共 16 条
[1]   A COMPUTATIONAL STUDY OF A MULTIPLE-CHOICE KNAPSACK ALGORITHM [J].
ARMSTRONG, RD ;
KUNG, DS ;
SINHA, P ;
ZOLTNERS, AA .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1983, 9 (02) :184-198
[2]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[3]   ANALYSIS OF OPTIMAL FINITE-ELEMENT MESHES IN R [J].
BABUSKA, I ;
RHEINBOLDT, WC .
MATHEMATICS OF COMPUTATION, 1979, 33 (146) :435-463
[4]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[5]  
BABUSKA I, 1984, NUMER MATH, V44, P75, DOI 10.1007/BF01389757
[6]  
BABUSKA I, 1984, ELLIPTIC PROBLEM SOL, V2
[7]  
BABUSKA I, 1983, P ARO WORKSHOP ADAPT
[8]  
BANK RE, 1983, P ARO WORKSHOP ADAPT, P74
[9]  
Geoffrion A., 1974, MATH PROGRAMMING STU, V2, DOI [10.1007/BFb0120690, DOI 10.1007/BFB0120686]
[10]  
NIEDERHAGEN R, 1983, THESIS RWTH AACHEN