RELATIVE ENTROPY UNDER MAPPINGS BY STOCHASTIC MATRICES

被引:58
作者
COHEN, JE
IWASA, Y
RAUTU, G
RUSKAI, MB
SENETA, E
ZBAGANU, G
机构
[1] KYUSHU UNIV 33,DEPT BIOL,FUKUOKA 812,JAPAN
[2] CTR MATH STAT,R-70158 BUCHAREST,ROMANIA
[3] UNIV LOWELL,DEPT MATH,LOWELL,MA 01854
[4] UNIV SYDNEY,DEPT MATH STAT,SYDNEY,NSW 2006,AUSTRALIA
[5] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
[6] AT&T BELL LABS,MURRAY HILL,NJ 07974
基金
日本学术振兴会; 美国国家科学基金会;
关键词
D O I
10.1016/0024-3795(93)90331-H
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The relative g-entropy of two finite, discrete probability distributions x = (x1, ..., x(n)) and y = (y1, ..., y(n)) is defined as H(g)(x, y) - SIGMA(k)x(k)g(y(k)/x(k) - 1), where g : (- 1, infinity) --> R is convex and g(0) = 0. When g(t) = - log(1 + t), then H(g)(x, y) = SIGMA(k)x(k) log(x(k)/y(k)), the usual relative entropy. Let P(n) = {x is-an-element-of R(n) : SIGMA(i)x(i) = 1, x(i) > 0 for-all i). Our major result is that, for any m X n column-stochastic matrix A, the contraction coefficient defined as eta(g)(A) = sup{H(g)(Ax, Ay)/H(g)(x, y): x, y is-an-element-of P(n), x not-equal y) satisfies eta(g)(A) less-than-or-equal-to 1 - alpha(A), where alpha(A) = min(j, k) SIGMA(i) min(a(ij), a(ik)) is Dobrushin's coefficient of ergodicity. Consequently, eta(g)(A) < 1 if and only if A is scrambling. Upper and lower bounds on eta(g)(A) are established. Analogous results hold for Markov chains in continuous time.
引用
收藏
页码:211 / 235
页数:25
相关论文
共 44 条
[1]   ON THE SELECTION OF MEASURES OF DISTANCE BETWEEN PROBABILITY-DISTRIBUTIONS [J].
ABRAHAMS, J .
INFORMATION SCIENCES, 1982, 26 (02) :109-113
[2]   SPREADING OF SETS IN PRODUCT SPACES AND HYPERCONTRACTION OF MARKOV OPERATOR [J].
AHLSWEDE, R ;
GACS, P .
ANNALS OF PROBABILITY, 1976, 4 (06) :925-939
[3]  
ALBERTI P, 1982, STOCHASTICITY PARTIA
[4]  
ALI SM, 1966, J ROY STAT SOC B, V28, P131
[5]  
[Anonymous], 1985, INTERACTING PARTICLE
[6]  
[Anonymous], 1877, WIENER BERICHTE
[7]  
[Anonymous], 1979, REVERSIBILITY STOCHA
[8]  
BAUER FL, 1969, LINEAR ALGEBRA APPL, V2, P275
[9]   EIGENVALUE INEQUALITIES FOR PRODUCTS OF MATRIX EXPONENTIALS [J].
COHEN, JE ;
FRIEDLAND, S ;
KATO, T ;
KELLY, FP .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1982, 45 (JUN) :55-95
[10]  
Csiszar I., 1967, STUDIA SCI MATH HUNG, V2, P299