THE MECHANISM OF COMPLEX LANGEVIN SIMULATIONS

被引:15
作者
GAUSTERER, H [1 ]
LEE, S [1 ]
机构
[1] UNIV FLORIDA,DEPT PHYS,GAINESVILLE,FL 32611
关键词
COMPLEX LANGEVIN METHODS; FOKKER-PLANCK EQUATION;
D O I
10.1007/BF01052754
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss conditions under which expectation values computed from a complex Langevin process Z will converge to integral averages over a given complex-valued weight function. The difficulties in proving a general result are pointed out. For complex-valued polynomial actions, it is shown that for a process converging to a strongly stationary process one gets the correct answer for averages of polynomials if c(tau)(k)=E(e(ikZ(tau))) satisfies certain conditions. If these conditions are not satisfied, then the stochastic process is not necessarily described by a complex Fokker-Planck equation. The result is illustrated with the exactly solvable complex frequency harmonic oscillator.
引用
收藏
页码:147 / 157
页数:11
相关论文
共 13 条
[1]  
[Anonymous], 1987, SCHRODINGER OPERATOR
[2]  
Arnold L., 1974, STOCHASTIC DIFFERENT
[3]   CONVERGENCE OF THE LANGEVIN SIMULATION FOR COMPLEX GAUSSIAN INTEGRALS [J].
HAYMAKER, RW ;
PENG, YC .
PHYSICAL REVIEW D, 1990, 41 (04) :1269-1275
[4]  
Hormander L., 1983, ANAL LINEAR PARTIAL, V2
[5]  
Klauder J.R., 1983, RECENT DEV HIGH ENER, P351
[6]   SPECTRUM OF CERTAIN NON-SELF-ADJOINT OPERATORS AND SOLUTIONS OF LANGEVIN-EQUATIONS WITH COMPLEX DRIFT [J].
KLAUDER, JR ;
PETERSEN, WP .
JOURNAL OF STATISTICAL PHYSICS, 1985, 39 (1-2) :53-72
[7]   MONTE-CARLO VERSUS LANGEVIN METHODS FOR NONPOSITIVE DEFINITE WEIGHTS [J].
LIN, HQ ;
HIRSCH, JE .
PHYSICAL REVIEW B, 1986, 34 (03) :1964-1967
[8]   EQUATION OF STATE CALCULATIONS BY FAST COMPUTING MACHINES [J].
METROPOLIS, N ;
ROSENBLUTH, AW ;
ROSENBLUTH, MN ;
TELLER, AH ;
TELLER, E .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (06) :1087-1092
[9]   THE ROLE OF A KERNEL IN COMPLEX LANGEVIN SYSTEMS [J].
OKAMOTO, H ;
OKANO, K ;
SCHULKE, L ;
TANAKA, S .
NUCLEAR PHYSICS B, 1989, 324 (03) :684-714
[10]   KERNEL-CONTROLLED COMPLEX LANGEVIN SIMULATION - FIELD-DEPENDENT KERNEL [J].
OKANO, K ;
SCHULKE, L ;
ZHENG, B .
PHYSICS LETTERS B, 1991, 258 (3-4) :421-426