THE MINMAX INFORMATION MEASURE

被引:24
作者
KAPUR, JN [1 ]
BACIU, G [1 ]
KESAVAN, HK [1 ]
机构
[1] HONG KONG UNIV SCI & TECHNOL, DEPT COMP SCI, KOWLOON, HONG KONG
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1080/00207729508929020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The importance of finding minimum entropy probability distributions and the value of minimum entropy for a probabilistic system is discussed. A method to calculate these when there are both moment and inequality constraints on probabilities is given and illustrated with examples. It is shown that: information given by moments or inequalities on probabilities can be measured by the reduction in the uncertainty gap (S-max - S-min); and in certain circumstances the inequalities on probabilities can provide significant information about probabilistic systems.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 8 条
[1]  
CHRISTENSEN R, 1981, ENTROPY MINIMAX SOUR, V1
[2]   INFORMATION THEORY AND STATISTICAL MECHANICS [J].
JAYNES, ET .
PHYSICAL REVIEW, 1957, 106 (04) :620-630
[3]  
Kapur J.N., 1992, ENTROPY OPTIMIZATION
[4]  
KAPUR JN, 1993, MEASURES INFORMATION
[5]  
KAPUR JN, 1989, GENERALIZED MAXIMUM
[6]   A MATHEMATICAL THEORY OF COMMUNICATION [J].
SHANNON, CE .
BELL SYSTEM TECHNICAL JOURNAL, 1948, 27 (03) :379-423
[7]   A MATHEMATICAL THEORY OF COMMUNICATION [J].
SHANNON, CE .
BELL SYSTEM TECHNICAL JOURNAL, 1948, 27 (04) :623-656
[8]  
Watanabe S., 1969, KNOWING GUESSING