KRYLOV-SUBSPACE METHODS FOR THE SYLVESTER EQUATION

被引:163
作者
HU, DY [1 ]
REICHEL, L [1 ]
机构
[1] KENT STATE UNIV,DEPT MATH & COMP SCI,KENT,OH 44242
基金
美国国家科学基金会;
关键词
D O I
10.1016/0024-3795(92)90031-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe Galerkin and minimal residual algorithms for the solution of Sylvester's equation AX - XB = C. The algorithms use Krylov subspaces for which orthogonal bases are generated by the Arnoldi process. For certain choices of Krylov subspaces the computation of the solution splits into the solution of many independent subproblems. This makes the algorithms suitable for implementation on parallel computers.
引用
收藏
页码:283 / 313
页数:31
相关论文
共 27 条