NEW APPROXIMATE RENORMALIZATION METHOD ON FRACTALS

被引:14
作者
HATTORI, K
HATTORI, T
WATANABE, H
机构
[1] GAKUSHUIN UNIV, FAC SCI, DEPT PHYS, TOSHIMA KU, TOKYO 171, JAPAN
[2] TOKYO METROPOLITAN UNIV, FAC SCI, DEPT MATH, SETAGAYA KU, TOKYO 158, JAPAN
关键词
D O I
10.1103/PhysRevA.32.3730
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
引用
收藏
页码:3730 / 3733
页数:4
相关论文
共 16 条
  • [1] ALEXANDER S, 1982, J PHYS LETT-PARIS, V43, pL625, DOI 10.1051/jphyslet:019820043017062500
  • [2] AC RESPONSE OF FRACTAL NETWORKS
    CLERC, JP
    TREMBLAY, AMS
    ALBINET, G
    MITESCU, CD
    [J]. JOURNAL DE PHYSIQUE LETTRES, 1984, 45 (19): : L913 - L924
  • [3] SOLUTIONS TO THE SCHRODINGER-EQUATION ON SOME FRACTAL LATTICES
    DOMANY, E
    ALEXANDER, S
    BENSIMON, D
    KADANOFF, LP
    [J]. PHYSICAL REVIEW B, 1983, 28 (06): : 3110 - 3123
  • [4] A RIGOROUS APPROACH TO ANDERSON LOCALIZATION
    FROHLICH, J
    SPENCER, T
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 103 (1-4): : 9 - 25
  • [5] GAWEDZKI K, 1985, PHYS REV LETT, V54, P92, DOI 10.1103/PhysRevLett.54.92
  • [6] GEOMETRIC IMPLEMENTATION OF HYPERCUBIC LATTICES WITH NONINTEGER DIMENSIONALITY BY USE OF LOW LACUNARITY FRACTAL LATTICES
    GEFEN, Y
    MEIR, Y
    MANDELBROT, BB
    AHARONY, A
    [J]. PHYSICAL REVIEW LETTERS, 1983, 50 (03) : 145 - 148
  • [7] HARA T, UNPUB
  • [8] Hattori K., UNPUB
  • [9] RENORMALIZATION ON SYMMETRIC FRACTALS
    HILFER, R
    BLUMEN, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (14): : L783 - L789
  • [10] RENORMALIZATION ON SIERPINSKI-TYPE FRACTALS
    HILFER, R
    BLUMEN, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (10): : L537 - L545