IMMUNOELECTRON MICROSCOPIC DEMONSTRATION OF INSULIN-STIMULATED TRANSLOCATION OF GLUCOSE TRANSPORTERS TO THE PLASMA-MEMBRANE OF ISOLATED RAT ADIPOCYTES AND MASKING OF THE CARBOXYL-TERMINAL EPITOPE OF INTRACELLULAR GLUT4

被引:149
作者
SMITH, RM
CHARRON, MJ
SHAH, N
LODISH, HF
JARETT, L
机构
[1] UNIV PENN,SCH MED,DEPT PATHOL & LAB MED,PHILADELPHIA,PA 19104
[2] WHITEHEAD INST BIOMED RES,CAMBRIDGE,MA 02142
关键词
GLUCOSE TRANSPORT; INSULIN ACTION; EPITOPE MASKING;
D O I
10.1073/pnas.88.15.6893
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Polyclonal antibodies to the amino- or carboxyl-terminal peptide sequences of the GLUT4 transporter protein were used in immunoelectron microscopic studies to demonstrate the location and insulin-induced translocation of GLUT4 in intact isolated rat adipocytes. Labeling of untreated adipocytes with the amino-terminal antibody revealed 95% of GLUT4 was intracellular, associated with plasma membrane invaginations or vesicles contiguous with or within 75 nm of the cell membrane. Insulin treatment increased plasma membrane labeling almost-equal-to 13-fold, to 52% of the total transporters, and decreased intracellular labeling proportionately. In contrast, labeling of untreated adipocytes with the carboxyl-terminal antibody or with a monoclonal antibody (1F8) that binds to the carboxyl terminus of GLUT4 detected fewer transporters, only almost-equal-to 40% of which were intracellular. In insulin-treated cells, plasma membrane labeling increased almost-equal-to 20-fold, but the total number of labeled transporters also increased almost-equal-to 13-fold. The number of intracellular transporters was not changed. The insulin-induced increase in plasma membrane labeling was reversible. Thus, the vast majority of GLUT4 transporters in untreated adipocytes are intracellular in invaginations or vesicles attached or close to the plasma membrane. Insulin treatment causes translocation of transporters to the plasma membrane, which involves flow of transporters from invaginations to the cell surface and possible fusion of subplasma membrane vesicles with the plasma membrane. Differences in the labeling of intracellular transporters by peptide antibodies suggested the carboxyl-terminal epitope of intracellular transporters was masked. The unmasking of the carboxyl terminus during translocation to the plasma membrane may be part of the mechanism by which insulin stimulates glucose transport in rat adipocytes.
引用
收藏
页码:6893 / 6897
页数:5
相关论文
共 35 条
  • [1] INSULIN-INDUCED TRANSLOCATION OF GLUCOSE TRANSPORTERS FROM POST-GOLGI COMPARTMENTS TO THE PLASMA-MEMBRANE OF 3T3-L1 ADIPOCYTES
    BLOK, J
    GIBBS, EM
    LIENHARD, GE
    SLOT, JW
    GEUZE, HJ
    [J]. JOURNAL OF CELL BIOLOGY, 1988, 106 (01) : 69 - 76
  • [2] CALDERHEAD DM, 1990, J BIOL CHEM, V265, P13800
  • [3] CALDERHEAD DM, 1988, J BIOL CHEM, V263, P12171
  • [4] CARTERSU C, 1980, J BIOL CHEM, V255, P382
  • [5] CHLAPOWSKI FJ, 1983, EUR J CELL BIOL, V32, P24
  • [6] CORVERA S, 1989, J BIOL CHEM, V264, P10133
  • [7] CROFFORD OB, 1965, J BIOL CHEM, V240, P14
  • [8] CUSHMAN SW, 1984, FED PROC, V43, P2251
  • [10] CUSHMAN SW, 1980, J BIOL CHEM, V255, P4758