In cultured mammalian cells, foreign DNA can be integrated into the host genome. Foreign DNA is frequently de novo methylated in specific patterns with successive cell generations. The sequence-specific methylation of promoter sequences in integrated foreign DNA is associated with the long-term inactivation of eukaryotic genes. We have now extended these experiments to studies on transgenic mice. As in previous work, a construct (pAd2E2AL-CAT) has been used which consists of the late E2A promoter of adenovirus type 2 (Ad2) DNA fused to the prokaryotic gene for chloramphenicol acetyltransferase (CAT). This construct has been integrated in the non-methylated or in the 5'-CCGG-3' premethylated form in the genomes of transgenic mice. DNA from various organs was analyzed by HpaII/MspI cleavage to assess the state of methylation in 5'-CCGG-3' sequences. The results demonstrate that the transgenic construct is in general stable. Non-methylated constructs have remained partly non-methylated for four generations or can become de novo methylated at all or most 5'-CCGG-3' sequences in the founder animal. Preimposed patterns of 5'-CCGG-3' methylation have been preserved for up to four generations beyond the founder animal. In the testes of two different founder animals and two F1 males, the transgenic DNA has become demethylated by an unknown mechanism. In all other organs, the transgenic DNA preserves the preimposed 5'-CCGG-3' methylation pattern. In the experiments performed so far we have not observed differences in the transmission of methylation patterns depending on whether the transgene has been maternally or paternally inherited. The 5'-CCGG-3' premethylated transgene does not catalyze CAT activity in several organs, except in one example of the testes of an animal in which the transgenic construct has become demethylated. In contrast, when the non-methylated construct has been integrated and remained largely non-methylated, CAT activity has been detected in extracts from some of the organs.