DERIVATION OF THE DIFFUSION EQUATION AND RADIATION BOUNDARY-CONDITION FROM THE FOKKER-PLANCK EQUATION

被引:11
作者
MENON, SVG
SAHNI, DC
机构
来源
PHYSICAL REVIEW A | 1985年 / 32卷 / 06期
关键词
D O I
10.1103/PhysRevA.32.3832
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
引用
收藏
页码:3832 / 3834
页数:3
相关论文
共 12 条
[1]  
ARRUDA JD, 1978, AM J PHYS, V46, P392
[2]   ON THE ASYMPTOTIC EQUIVALENCE OF THE FOKKER-PLANCK AND DIFFUSION-EQUATIONS [J].
BEALS, R ;
PROTOPOPESCU, V .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 1983, 12 (02) :109-127
[3]  
BURSCHKA MA, 1981, J STAT PHYS, V17, P323
[4]  
CASE KM, 1969, SIAM AMS P, V1, P17
[5]   Stochastic problems in physics and astronomy [J].
Chandrasekhar, S .
REVIEWS OF MODERN PHYSICS, 1943, 15 (01) :0001-0089
[6]  
Ganapol B. D., 1984, Transport Theory and Statistical Physics, V13, P635, DOI 10.1080/00411458408211662
[7]   BROWNIAN-MOTION WITH AN ABSORBING BOUNDARY [J].
HARRIS, S .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2659-2663
[8]   ASYMPTOTIC THEORY OF LINEAR TRANSPORT-EQUATION FOR SMALL MEAN FREE PATHS .1. [J].
LARSEN, EW ;
DARRUDA, J .
PHYSICAL REVIEW A, 1976, 13 (05) :1933-1939
[9]   REDUCTION OF THE FOKKER-PLANCK EQUATION WITH AN ABSORBING OR REFLECTING BOUNDARY TO THE DIFFUSION EQUATION AND THE RADIATION BOUNDARY-CONDITION [J].
NAQVI, KR ;
MORK, KJ ;
WALDENSTROM, S .
PHYSICAL REVIEW LETTERS, 1982, 49 (05) :304-307
[10]   HYDRODYNAMIC BOUNDARY-CONDITIONS FROM KINETIC-THEORY [J].
PROTOPOPESCU, V ;
KEYES, T .
PHYSICS LETTERS A, 1983, 95 (3-4) :139-142