CHAOTIC AND HOMOCLINIC BEHAVIOR FOR NUMERICAL DISCRETIZATIONS OF THE NONLINEAR SCHRODINGER-EQUATION

被引:51
作者
MCLAUGHLIN, DW
SCHOBER, CM
机构
[1] PRINCETON UNIV,PROGRAM APPL & COMPUTAT MATH,PRINCETON,NJ 08544
[2] UNIV ARIZONA,PROGRAM APPL MATH,TUCSON,AZ 85721
来源
PHYSICA D | 1992年 / 57卷 / 3-4期
基金
美国国家科学基金会;
关键词
D O I
10.1016/0167-2789(92)90013-D
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Certain conservative discretizations of the NLS can produce irregular behavior. We consider the diagonal discretization as a conservative perturbation of the integrable discretization and study the homoclinic crossings in its nonlinear spectrum. We find that irregularity sets in when two homoclinic structures are present and, in this case, many and continual homoclinic crossings occur throughout the irregular time series. We indicate a Melnikov analysis to study the consequences of this homoclinic behavior.
引用
收藏
页码:447 / 465
页数:19
相关论文
共 22 条
[1]  
ABLOWITZ MJ, 1976, STUD APPL MATH, V55, P213
[2]  
ABLOWITZ MJ, 1990, HOMOCLINIC BOUNDARIE
[3]  
ABLOWITZ MJ, 1990, PHYS REV LETT
[4]   A QUASI-PERIODIC ROUTE TO CHAOS IN A NEAR-INTEGRABLE PDE [J].
BISHOP, AR ;
FOREST, MG ;
MCLAUGHLIN, DW ;
OVERMAN, EA .
PHYSICA D, 1986, 23 (1-3) :293-328
[5]   QUASI-PERIODIC ROUTE TO CHAOS IN A NEAR-INTEGRABLE PDE - HOMOCLINIC CROSSINGS [J].
BISHOP, AR ;
MCLAUGHLIN, DW ;
FOREST, MG ;
OVERMAN, EA .
PHYSICS LETTERS A, 1988, 127 (6-7) :335-340
[6]  
CALINI A, 1991, UNPUB MELNIKOV ANAL
[7]  
CONSTANCE M, 1991, THESIS U ARIZONA
[8]   GEOMETRY OF THE MODULATIONAL INSTABILITY .3. HOMOCLINIC ORBITS FOR THE PERIODIC SINE-GORDON EQUATION [J].
ERCOLANI, N ;
FOREST, MG ;
MCLAUGHLIN, DW .
PHYSICA D-NONLINEAR PHENOMENA, 1990, 43 (2-3) :349-384
[9]   THE ORIGIN AND SATURATION OF MODULATIONAL INSTABILITIES [J].
ERCOLANI, N ;
FOREST, MG ;
MCLAUGHLIN, DW .
PHYSICA D, 1986, 18 (1-3) :472-474
[10]  
ERCOLANI N, 1987, GEOMETRY MODULATIO 1