HETEROSTRUCTURE BARRIER VARACTOR SIMULATION USING AN INTEGRATED HYDRODYNAMIC DEVICE HARMONIC-BALANCE CIRCUIT ANALYSIS TECHNIQUE

被引:6
作者
JONES, JR
JONES, SH
TAIT, GB
ZYBURA, MF
机构
[1] Department of Electrical Engineering, University of Virginia, Charlottesville, VA
[2] Electrical Engineering and Computer Science, United States Military Academy, West Point, NY
来源
IEEE MICROWAVE AND GUIDED WAVE LETTERS | 1994年 / 4卷 / 12期
基金
美国国家科学基金会;
关键词
D O I
10.1109/75.336230
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate and efficient simulations of the large-signal time-dependent behavior of GaAs/AlGaAs Heterostructure Barrier Varactor (HBV) frequency tripler circuits have been obtained. This is accomplished by combining a novel harmonic-balance circuit analysis technique with a physics-based hydrodynamic device simulator. The integrated HBV hydrodynamic device/harmonic-balance circuit simulator allows HBV multiplier circuits to be co-designed from both a device and a circuit point of view. Comparisons are made with the experimental results of Choudhury et al. for GaAs/AlGaAs HBV frequency triplers operating near 200 GHz. These comparisons illustrate the importance of representing active devices with physics-based numerical device models rather than analytical device models based on lumped quasi-static equivalent circuits.
引用
收藏
页码:411 / 413
页数:3
相关论文
共 11 条
  • [1] Kollberg E., Rydberg A., Quantum-barrier-varactor diodes for high-efficiency millimetre-wave multipliers, Electron. Lett., 25, 25, pp. 1696-1698, (1989)
  • [2] Jones J.R., Tait G.B., Jones S.H., DC and large-signal AC electron transport properties of GaAs/InGaAs/AlGaAs heterostructure barrier varactors, Proc. 1993 Int. Semiconductor Device Research Symp., pp. 389-392, (1993)
  • [3] Jones J.R., Tait G.B., Jones S.H., DC and large-signal time-dependent electron transport in heterostructure devices: an investigation of the heterostructure barrier varactor, IEEE Trans. Electron. Dev., (1994)
  • [4] Lundstrom M.S., Schuelke R.J., Numerical analysis of heterostructure semiconductor devices, IEEE Trans. Electron Dev., ED-30, 9, pp. 1151-1159, (1983)
  • [5] Horio K., Yanai H., Numerical modeling of heterojunctions including the thermionic emission mechanism at the heterojunction interface, IEEE Trans. Electron Dev., 37, 4, pp. 1093-1098, (1990)
  • [6] Tait G.B., Westgate C.R., Electron transport in rectifying semiconductor alloy ramp heterostructures, IEEE Trans. Electron Dev., ED-38, 6, pp. 1262-1270, (1991)
  • [7] Adams J.G., Tang T.W., A revised boundary condition for the numerical analysis of schottky barrier diodes, IEEE Electron. Dev. Lett., ED-7, 9, pp. 525-527, (1986)
  • [8] Adams J.G., Tang T.W., Computer simulation of boundary conditions for schottky barrier diodes, Electon. Lett., 25, 16, pp. 1098-1100, (1989)
  • [9] Siegel P.H., Kerr A.R., Hwang W., Topics in the optimization of millimeter-wave mixers, NASA Tech. Papers, 2287, (1984)
  • [10] Ortega J., Rheinboldt W., Iterative Solution of Nonlinear Equations in Several Variables, (1970)