DUAL MOMENT MAPS INTO LOOP ALGEBRAS

被引:55
作者
ADAMS, MR
HARNAD, J
HURTUBISE, J
机构
[1] UNIV MONTREAL,CTR RECH MATH,MONTREAL H3C 3J7,QUEBEC,CANADA
[2] CONCORDIA UNIV,DEPT MATH,MONTREAL H3G 1M8,QUEBEC,CANADA
[3] MCGILL UNIV,DEPT MATH,MONTREAL H3A 2K6,QUEBEC,CANADA
关键词
AMS subject classification (1980): 58F07;
D O I
10.1007/BF00626526
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Moment maps are defined from the space of rank-r deformations of a fixed n x n matrix A to the duals {Mathematical expression} of the positive half of the loop algebras {Mathematical expression}. These maps are shown to give rise to the same invariant manifolds under Hamiltonian flow obtained through the Adler-Kostant-Symes theorem from the rings {Mathematical expression} of invariant functions. This gives a dual characterization of integrable Hamiltonian systems as isospectral flow in the two loop algebras. © 1990 Kluwer Academic Publishers.
引用
收藏
页码:299 / 308
页数:10
相关论文
共 13 条
[1]   ISOSPECTRAL HAMILTONIAN FLOWS IN FINITE AND INFINITE DIMENSIONS .1. GENERALIZED MOSER SYSTEMS AND MOMENT MAPS INTO LOOP ALGEBRAS [J].
ADAMS, MR ;
HARNAD, J ;
PREVIATO, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 117 (03) :451-500
[2]  
ADAMS MR, IN PRESS COMM MATH P
[3]  
ADLER M, 1979, INVENT MATH, V50, P219
[4]   COMPLETELY INTEGRABLE SYSTEMS, EUCLIDEAN LIE-ALGEBRAS, AND CURVES [J].
ADLER, M ;
VANMOERBEKE, P .
ADVANCES IN MATHEMATICS, 1980, 38 (03) :267-317
[5]   SOLUTION TO A GENERALIZED TODA LATTICE AND REPRESENTATION THEORY [J].
KOSTANT, B .
ADVANCES IN MATHEMATICS, 1979, 34 (03) :195-338
[6]  
Krichever I.M., 1077, RUSS MATH SURV+, V32, P185, DOI 10.1070/RM1977v032n06ABEH003862
[7]  
Manakov S.V., 1977, FUNCTIONAL ANAL APPL, V10, P328
[8]  
Mischenko A. S., 1976, SOV MATH DOKL, V17, P1591
[9]  
MISCHENKO AS, 1970, FUNCTIONAL ANAL APPL, V4, P232
[10]   THE MOTION OF THE FREE N-DIMENSIONAL RIGID BODY [J].
RATIU, T .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1980, 29 (04) :609-629