PROBLEMS IN ESTIMATING DYNAMICS FROM DATA

被引:51
作者
KOSTELICH, EJ
机构
[1] Department of Mathematics, Arizona State University, Tempe
来源
PHYSICA D | 1992年 / 58卷 / 1-4期
基金
美国国家科学基金会;
关键词
D O I
10.1016/0167-2789(92)90105-V
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses some difficulties in estimating dynamics from time-delay embeddings of experimental data that can be characterized as low-dimensional. A new procedure is described to reduce noise by exploiting the properties of saddle periodic orbits on the reconstructed attractor.
引用
收藏
页码:138 / 152
页数:15
相关论文
共 42 条
[1]   EXPLORING CHAOTIC MOTION THROUGH PERIODIC-ORBITS [J].
AUERBACH, D ;
CVITANOVIC, P ;
ECKMANN, JP ;
GUNARATNE, G ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1987, 58 (23) :2387-2389
[2]  
Benettin G., 1980, MECCANICA, V15, P9, DOI DOI 10.1007/BF02128236
[3]   STRANGE ATTRACTORS IN WEAKLY TURBULENT COUETTE-TAYLOR FLOW [J].
BRANDSTATER, A ;
SWINNEY, HL .
PHYSICAL REVIEW A, 1987, 35 (05) :2207-2220
[4]   LOCAL ADAPTIVE GALERKIN BASES FOR LARGE-DIMENSIONAL DYNAMIC-SYSTEMS [J].
BROOMHEAD, DS ;
INDIK, R ;
NEWELL, AC ;
RAND, DA .
NONLINEARITY, 1991, 4 (02) :159-197
[5]   EXTRACTING QUALITATIVE DYNAMICS FROM EXPERIMENTAL-DATA [J].
BROOMHEAD, DS ;
KING, GP .
PHYSICA D, 1986, 20 (2-3) :217-236
[6]   COMPUTING THE LYAPUNOV SPECTRUM OF A DYNAMIC SYSTEM FROM AN OBSERVED TIME-SERIES [J].
BROWN, R ;
BRYANT, P ;
ABARBANEL, HDI .
PHYSICAL REVIEW A, 1991, 43 (06) :2787-2806
[7]   NONLINEAR PREDICTION OF CHAOTIC TIME-SERIES [J].
CASDAGLI, M .
PHYSICA D, 1989, 35 (03) :335-356
[8]  
CAWLEY R, LOCAL GEOMETRIC PROJ
[9]  
Chatterjee S., 1988, SENSITIVITY ANAL LIN, DOI 10.1002/9780470316764
[10]  
Dongarra J. J., 1979, LINPACK USERS GUIDE