GLUTATHIONE-RELATED ENZYMES IN BRAIN IN PARKINSONS-DISEASE

被引:261
作者
SIAN, J
DEXTER, DT
LEES, AJ
DANIEL, S
JENNER, P
MARSDEN, CD
机构
[1] UNIV LONDON KINGS COLL,DIV BIOMED SCI,PHARMACOL GRP,NEURODEGENERAT DIS RES CTR,LONDON WC2R 2LS,ENGLAND
[2] NATL HOSP NEUROL & NEUROSURG,INST NEUROL,DEPT CLIN NEUROL,PARKINSONS DIS SOC BRAIN BANK,LONDON WC1N 3BG,ENGLAND
关键词
D O I
10.1002/ana.410360306
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The activities of enzymes related to glutathione synthesis, degradation, and function were analyzed in various brain regions (cerebral cortex, caudate nucleus, putamen, globus pallidus, and substantia nigra) from patients dying with pathologically proven Parkinson's disease (PD) and multiple system atrophy (MSA), and from matched controls with no neurological disorder. The activity of the glutathione degradative enzyme, gamma-glutamyltranspeptidase, was selectively elevated in substantia nigra (SN) in PD. In contrast, the activity of the synthetic enzyme, gamma-glutamylcysteine synthetase, was unaltered in SN and other brain areas in PD. Similarly, glutathione peroxidase and glutathione transferase activities were unaltered in SN or in other brain regions in PD. gamma-Glutamylcysteine synthetase, gamma-glutamyltranspeptidase, glutathione peroxidase, and glutathione transferase activities were normal in SN and most other brain areas in MSA. However, glutathione peroxidase activity was increased in the lateral globus pallidus and caudate nucleus in MSA. The depletion of reduced glutathione (GSH) in the SN in PD, with no change in oxidized glutathione (GSSG), may be due to efflux of GSH mainly out of glia promoted by gamma-glutamyltranspeptidase, perhaps with additional increased conversion of GSH to GSSG (which itself is transported out of cells by gamma-glutamyltranspeptidase), in response to increased hydrogen peroxide formation.
引用
收藏
页码:356 / 361
页数:6
相关论文
共 44 条
[1]   CHARACTERIZATION AND LOCALIZATION OF GLUTATHIONE-S-TRANSFERASES IN RAT-BRAIN AND BINDING OF HORMONES, NEUROTRANSMITTERS, AND DRUGS [J].
ABRAMOVITZ, M ;
HOMMA, H ;
ISHIGAKI, S ;
TANSEY, F ;
CAMMER, W ;
LISTOWSKY, I .
JOURNAL OF NEUROCHEMISTRY, 1988, 50 (01) :50-57
[2]   BRAIN PEROXIDASE AND CATALASE IN PARKINSON DISEASE [J].
AMBANI, LM ;
VANWOERT, MH ;
MURPHY, S .
ARCHIVES OF NEUROLOGY, 1975, 32 (02) :114-118
[3]  
BATES TE, 1994, IN PRESS J NEUROCHEM
[4]   DEPRENYL SUPPRESSES THE OXIDANT STRESS ASSOCIATED WITH INCREASED DOPAMINE TURNOVER [J].
COHEN, G ;
SPINA, MB .
ANNALS OF NEUROLOGY, 1989, 26 (05) :689-690
[5]  
COHEN G, 1985, OXIDATIVE STRESS, P383
[6]  
CRAMMER W, 1992, J OLIGODENDROCYTIC L, V3, P40
[7]  
DAMIER P, 1993, NEUROSCIENCE, V32, P1
[8]   INCREASED LEVELS OF LIPID HYDROPEROXIDES IN THE PARKINSONIAN SUBSTANTIA-NIGRA - AN HPLC AND ESR STUDY [J].
DEXTER, DT ;
HOLLEY, AE ;
FLITTER, WD ;
SLATER, TF ;
WELLS, FR ;
DANIEL, SE ;
LEES, AJ ;
JENNER, P ;
MARSDEN, CD .
MOVEMENT DISORDERS, 1994, 9 (01) :92-97
[9]   INCREASED NIGRAL IRON CONTENT AND ALTERATIONS IN OTHER METAL-IONS OCCURRING IN BRAIN IN PARKINSONS-DISEASE [J].
DEXTER, DT ;
WELLS, FR ;
LEES, AJ ;
AGID, F ;
AGID, Y ;
JENNER, P ;
MARSDEN, CD .
JOURNAL OF NEUROCHEMISTRY, 1989, 52 (06) :1830-1836
[10]   INDEXES OF OXIDATIVE STRESS AND MITOCHONDRIAL-FUNCTION IN INDIVIDUALS WITH INCIDENTAL LEWY BODY DISEASE [J].
DEXTER, DT ;
SIAN, J ;
ROSE, S ;
HINDMARSH, JG ;
MANN, VM ;
COOPER, JM ;
WELLS, FR ;
DANIEL, SE ;
LEES, AJ ;
SCHAPIRA, AHV ;
JENNER, P ;
MARSEN, CD .
ANNALS OF NEUROLOGY, 1994, 35 (01) :38-44