THE CHARACTERISTIC STREAMLINE DIFFUSION METHOD FOR THE TIME-DEPENDENT INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

被引:71
作者
HANSBO, P
机构
[1] Department of Mathematics, Chalmers University of Technology
关键词
D O I
10.1016/0045-7825(92)90039-M
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper presents a streamline diffusion finite element method for time-dependent flow problems, with or without free surface, governed by the incompressible Navier-Stokes equations. The method is based on space-time elements, discontinuous in time and continuous in space, which yields a general setting: if the elements are oriented along the characteristic direction in space-time a Lagrangian method is obtained, if they are fixed the method is Eulerian. Thus the method may be implemented as an arbitrary Lagrangian-Eulerian method, retaining the advantages of the streamline diffusion method on fixed grids. In particular. our method is stable in the whole range of Reynolds numbers and yields the possibility of equal order interpolation for velocity and pressure. Furthermore, since the solution is allowed to be discontinuous in time at discrete time levels, large deformations of the original domain are easily handled, e.g. with remeshing. Numerical results for some 2D-problems are given.
引用
收藏
页码:171 / 186
页数:16
相关论文
共 38 条
[1]   AN ALGORITHM FOR THE USE OF THE LAGRANGIAN SPECIFICATION IN NEWTONIAN FLUID-MECHANICS AND APPLICATIONS TO FREE-SURFACE FLOW [J].
BACH, P ;
HASSAGER, O .
JOURNAL OF FLUID MECHANICS, 1985, 152 (MAR) :173-190
[2]  
BONNEROT R, 1974, J NUMER METHODS ENG, V8, P811
[3]   STREAMLINE UPWIND PETROV-GALERKIN FORMULATIONS FOR CONVECTION DOMINATED FLOWS WITH PARTICULAR EMPHASIS ON THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BROOKS, AN ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 32 (1-3) :199-259
[4]   CHARACTERISTIC GALERKIN METHODS FOR SCALAR CONSERVATION-LAWS IN ONE DIMENSION [J].
CHILDS, PN ;
MORTON, KW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (03) :553-594
[5]  
Demkowicz L., 1985, FINITE ELEMENTS FLUI, V6, P291
[6]   AN ARBITRARY LAGRANGIAN-EULERIAN FINITE-ELEMENT METHOD FOR TRANSIENT DYNAMIC FLUID STRUCTURE INTERACTIONS [J].
DONEA, J ;
GUILIANI, S ;
HALLEUX, JP .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 33 (1-3) :689-723
[7]   NUMERICAL-METHODS FOR CONVECTION-DOMINATED DIFFUSION-PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE-ELEMENT OR FINITE-DIFFERENCE PROCEDURES [J].
DOUGLAS, J ;
RUSSELL, TF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (05) :871-885
[8]   TIME DISCRETIZATION OF PARABOLIC PROBLEMS BY THE DISCONTINUOUS GALERKIN METHOD [J].
ERIKSSON, K ;
JOHNSON, C ;
THOMEE, V .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (04) :611-643
[9]  
ERIKSSON K, 199018 CHALM U TECHN
[10]   FINITE-ELEMENT METHOD FOR TIME-DEPENDENT INCOMPRESSIBLE FREE-SURFACE FLOW [J].
FREDERIKSEN, CS ;
WATTS, AM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 39 (02) :282-304