ON STRUCTURE AND STABILITY IN STOCHASTIC PROGRAMS WITH RANDOM TECHNOLOGY MATRIX AND COMPLETE INTEGER RECOURSE

被引:56
作者
SCHULTZ, R
机构
[1] Konrad-Zuse-Zentrum für Informationstechnik Berlin, Berlin, D-10711
关键词
STOCHASTIC INTEGER PROGRAMMING; PARAMETRIC INTEGER PROGRAMMING; CONTINUITY; STABILITY; WEAK CONVERGENCE OF PROBABILITY MEASURES;
D O I
10.1007/BF01585929
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For two-stage stochastic programs with integrality constraints in the second stage, we study continuity properties of the expected recourse as a function both of the first-stage policy and the integrating probability measure. Sufficient conditions for lower semicontinuity, continuity and Lipschitz continuity with respect to the first-stage policy are presented. Furthermore, joint continuity in the policy and the probability measure is established. This leads to conclusions on the stability of optimal values and optimal solutions to the two-stage stochastic program when subjecting the underlying probability measure to perturbations.
引用
收藏
页码:73 / 89
页数:17
相关论文
共 31 条
[1]  
Bank B., 1982, NONLINEAR PARAMETRIC
[2]  
BANK B, 1988, PARAMETRIC INTEGER O
[3]  
Berge C., 1959, ESPACES TOPOLOGIQUES
[4]  
Billingsley P., 2013, CONVERGE PROBAB MEAS
[5]  
BIRGE JR, 1986, MATH PROGRAM STUD, V27, P54, DOI 10.1007/BFb0121114
[6]   VALUE FUNCTION OF A MIXED INTEGER-PROGRAM .1. [J].
BLAIR, CE ;
JEROSLOW, RG .
DISCRETE MATHEMATICS, 1977, 19 (02) :121-138
[7]  
Borell C., 1975, PERIOD MATH HUNG, V6, P111, DOI DOI 10.1007/BF02018814
[8]  
DUDLEY RM, 1989, REAL ANAL PROBABILIT
[9]  
Dupacova J., 1987, Optimization, V18, P507, DOI 10.1080/02331938708843266
[10]  
Ganssler P., 1977, WAHRSCHEINLICHKEITST