A RANDOMIZED LINEAR-TIME ALGORITHM TO FIND MINIMUM SPANNING-TREES

被引:236
作者
KARGER, DR
KLEIN, PN
TARJAN, RE
机构
[1] STANFORD UNIV,STANFORD,CA 94305
[2] BROWN UNIV,DEPT COMP SCI,PROVIDENCE,RI 02912
[3] PRINCETON UNIV,DEPT COMP SCI,PRINCETON,NJ 08544
[4] NEC CORP LTD,RES INST,PRINCETON,NJ
来源
JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY | 1995年 / 42卷 / 02期
关键词
MATROID; MINIMUM SPANNING TREE; NETWORK; RANDOMIZED ALGORITHM;
D O I
10.1145/201019.201022
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present a randomized linear-time algorithm to find a minimum spanning tree in a connected graph with edge weights. The algorithm uses random sampling in combination with a recently discovered linear-time algorithm for verifying a minimum spanning tree. Our computational model is a unit-cost random-access machine with the restriction that the only operations allowed on edge weights are binary comparisons.
引用
收藏
页码:321 / 328
页数:8
相关论文
共 23 条
[1]  
ALON N, 1992, PROBABILISTIC METHOD, P223
[2]  
Boruvka O, 1926, PRACE MOR PRIRODOVED, V3, P37
[3]  
CHERIYAN J, 1990, LECT NOTES COMPUT SC, V443, P235
[4]   A MEASURE OF ASYMPTOTIC EFFICIENCY FOR TESTS OF A HYPOTHESIS BASED ON THE SUM OF OBSERVATIONS [J].
CHERNOFF, H .
ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (04) :493-507
[5]  
Cole R., 1986, 27th Annual Symposium on Foundations of Computer Science (Cat. No.86CH2354-9), P478, DOI 10.1109/SFCS.1986.10
[6]  
COLE R, 1994, 6TH P S PAR ALGOR AR, P11
[7]   VERIFICATION AND SENSITIVITY ANALYSIS OF MINIMUM SPANNING-TREES IN LINEAR TIME [J].
DIXON, B ;
RAUCH, M ;
TARJAN, RE .
SIAM JOURNAL ON COMPUTING, 1992, 21 (06) :1184-1192
[8]  
Feller W., 1968, INTRO PROBABILITY TH, V1
[9]  
FREDMAN ML, 1990, 31ST P FOCS, P719
[10]  
Gabow H. N., 1984, 25th Annual Symposium on Foundations of Computer Science (Cat. No. 84CH2085-9), P347, DOI 10.1109/SFCS.1984.715935