1-INVERSES FOR POLYNOMIAL-MATRICES OF NONCONSTANT RANK

被引:9
作者
BERENSTEIN, CA
STRUPPA, DC
机构
[1] UNIV MARYLAND,DEPT MATH,COLLEGE PK,MD 20742
[2] SCUOLA NORMALE SUPER,I-56100 PISA,ITALY
关键词
D O I
10.1016/0167-6911(86)90124-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let p//1. . . . , p//t be polynomials in C**n with a variety V of common zeros contained in a suitable open set U. Explicit formulas are provided to construct rational functions lambda //1,. . . . , lambda //s such that SIGMA p//i lambda //i equals 1, for i equals 1 to 5, and such that the singularities of the lambda //i are contained in U. This result is applied to compute rational functions-valued l-inverses of matrices with polynomial coefficients, which do not have constant rank, while retaining control over the location of the singularities of the rational functions themselves.
引用
收藏
页码:309 / 314
页数:6
相关论文
共 10 条
[1]  
ANDERSSON M, 1982, ANN I FOURIER, V32, P91
[2]   ON EXPLICIT SOLUTIONS TO THE BEZOUT EQUATION [J].
BERENSTEIN, CA ;
STRUPPA, DC .
SYSTEMS & CONTROL LETTERS, 1984, 4 (01) :33-39
[3]   THE PROBLEM OF DECONVOLUTION [J].
BERENSTEIN, CA ;
YGER, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1983, 54 (02) :113-160
[4]  
BERENSTEIN CA, 1983, SIGNAL RECOVERY M OP
[5]   GENERALIZED INVERSE OF POLYNOMIAL MATRICES [J].
BOSE, NK ;
MITRA, SK .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1978, 23 (03) :491-493
[6]  
Hormander L., 1973, INTRO COMPLEX ANAL S
[7]  
HORMANDER L, 1973, AM MATH SOC B, V73, P943
[8]  
LECH C, 1958, ARK MATH, V52, P543
[9]  
RAO KPSB, 1983, LINEAR ALGEBRA APPL, V49, P179
[10]   ON GENERALIZED INVERSES OF POLYNOMIAL AND OTHER MATRICES [J].
SONTAG, ED .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1980, 25 (03) :514-517