A MAJ STATISTIC FOR SET PARTITIONS

被引:37
作者
SAGAN, BE [1 ]
机构
[1] MICHIGAN STATE UNIV,DEPT MATH,E LANSING,MI 48824
关键词
D O I
10.1016/S0195-6698(13)80009-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a weighting of set partitions which is analogous to the major index for permutations. The corresponding weight generating function yields the q-Stirling numbers of the second kind of Carlitz and Gould. Other interpretations of maj are given in terms of restricted growth functions, rook placements and reduced matrices. The Foata bijection interchanging inv and maj for permutations also has a version for partitions. Finally, we generalize these constructions to an analog of Rawling's rmaj and to two new kinds of p, q-Stirling numbers. © 1991, Academic Press Limited. All rights reserved.
引用
收藏
页码:69 / 79
页数:11
相关论文
共 13 条
[1]   Q-BERNOULLI NUMBERS AND POLYNOMIALS [J].
CARLITZ, L .
DUKE MATHEMATICAL JOURNAL, 1948, 15 (04) :987-1000
[2]   On Abelian fields [J].
Carlitz, Leonard .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1933, 35 (1-4) :122-136
[3]   ON NETTO INVERSION NUMBER OF A SEQUENCE [J].
FOATA, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 19 (01) :236-&
[4]   NONRECURSIVE COMBINATORIAL RULE FOR EULERIAN NUMBERS [J].
FOULKES, HO .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1977, 22 (02) :246-248
[5]   Q-COUNTING ROOK CONFIGURATIONS AND A FORMULA OF FROBENIUS [J].
GARSIA, AM ;
REMMEL, JB .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 41 (02) :246-275
[6]   A Q-ANALOG OF THE EXPONENTIAL FORMULA [J].
GESSEL, IM .
DISCRETE MATHEMATICS, 1982, 40 (01) :69-80
[7]   Q-STIRLING NUMBERS OF FIRST AND SECOND KINDS [J].
GOULD, HW .
DUKE MATHEMATICAL JOURNAL, 1961, 28 (02) :281-&
[10]   Q-ANALOG OF RESTRICTED GROWTH FUNCTIONS, DOBINSKIS EQUALITY, AND CHARLIER POLYNOMIALS [J].
MILNE, SC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 245 (NOV) :89-118