ON THE SLOW DYNAMICS FOR THE CAHN-HILLIARD EQUATION IN ONE SPACE DIMENSION

被引:51
作者
BRONSARD, L
HILHORST, D
机构
[1] CARNEGIE MELLON UNIV, DEPT MATH, PITTSBURGH, PA 15213 USA
[2] INST ADV STUDY, PRINCETON, NJ 08540 USA
[3] CNRS, ANAL NUMER LAB, F-91405 ORSAY, FRANCE
[4] UNIV PARIS 11, F-91405 ORSAY, FRANCE
来源
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES | 1992年 / 439卷 / 1907期
关键词
D O I
10.1098/rspa.1992.0176
中图分类号
学科分类号
摘要
we study the limiting behaviour of the solution of the Cahn-Hilliard equation using 'energy-type methods'. We assume that the initial data has a 'transition layer structure', i.e. u(epsilon) almost-equal-to +/- 1 except near finitely many transition points. We show than, in the limit as epsilon --> 0, the solution maintains its transition layer structure, and the transition layers move slower than any power of epsilon.
引用
收藏
页码:669 / 682
页数:14
相关论文
共 27 条
[1]   SLOW MOTION FOR THE CAHN-HILLIARD EQUATION IN ONE SPACE DIMENSION [J].
ALIKAKOS, N ;
BATES, PW ;
FUSCO, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 90 (01) :81-135
[2]   SPECTRAL COMPARISON PRINCIPLES FOR THE CAHN-HILLIARD AND PHASE-FIELD EQUATIONS, AND TIME SCALES FOR COARSENING [J].
BATES, PW ;
FIFE, PC .
PHYSICA D-NONLINEAR PHENOMENA, 1990, 43 (2-3) :335-348
[3]  
BATES PW, 1982, METASTABLE PATTERNS
[4]   ON THE SLOWNESS OF PHASE-BOUNDARY MOTION IN ONE SPACE DIMENSION [J].
BRONSARD, L ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (08) :983-997
[5]  
BRONSARD L, 1988, THESIS NYU
[6]   ON SPINODAL DECOMPOSITION [J].
CAHN, JW .
ACTA METALLURGICA, 1961, 9 (09) :795-801
[7]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[8]   STRUCTURED PHASE-TRANSITIONS ON A FINITE INTERVAL [J].
CARR, J ;
GURTIN, ME ;
SLEMROD, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1984, 86 (04) :317-351
[9]   METASTABLE PATTERNS IN SOLUTIONS OF UT=E2UXX-F(U) [J].
CARR, J ;
PEGO, RL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (05) :523-576
[10]   NUMERICAL-STUDIES OF THE CAHN-HILLIARD EQUATION FOR PHASE-SEPARATION [J].
ELLIOTT, CM ;
FRENCH, DA .
IMA JOURNAL OF APPLIED MATHEMATICS, 1987, 38 (02) :97-128