GRADIENT CONFORMAL KILLING VECTORS AND EXACT-SOLUTIONS

被引:23
作者
DAFTARDAR, V [1 ]
DADHICH, N [1 ]
机构
[1] INTERUNIV CTR ASTRON & ASTROPHYS,POONA 411007,MAHARASHTRA,INDIA
关键词
D O I
10.1007/BF02107144
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We establish a connection between conformally related Einstein spaces and conformal killing vectors (CKV). We begin with the conformal map and prove that (a) under the conformal mapping (g) over bar(ik) = w(-2)g(ik), the necessary and sufficient condition for the tracefree part of the Ricci tenser (S-ik = R(ik) - (R/4)g(ik)) to remain invariant is that w,(i) is a CKV of g(ik) and (b) the most general form for w for conformally flat Einstein space, which is the de Sitter space, is composed of three terms each of which alone represents a hat space. The existence of gradient CKV (GCKV) is examined in relation to vacuum and perfect fluid spacetimes.
引用
收藏
页码:859 / 868
页数:10
相关论文
共 15 条
[1]   Einstein spaces which are mapped conformally on each other [J].
Brinkmann, HW .
MATHEMATISCHE ANNALEN, 1925, 94 :119-145
[2]   Riemann spaces conformal to Einstein spaces [J].
Brinkmann, HW .
MATHEMATISCHE ANNALEN, 1924, 91 :269-278
[3]  
CHOQUETBRUHAT Y, 1982, ANAL MANIFOLDS PHYSI
[4]  
CHOQUETBRUHAT Y, 1991, ANAL MANIFOLDS PHYSI
[5]   SPACETIMES ADMITTING INHERITING CONFORMAL KILLING VECTOR-FIELDS [J].
COLEY, AA ;
TUPPER, BOJ .
CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (11) :1961-1981
[6]   AFFINE CONFORMAL VECTORS IN SPACE-TIME [J].
COLEY, AA ;
TUPPER, BOJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (05) :1754-1764
[7]   FLUID SPACETIMES ADMITTING COVARIANTLY CONSTANT VECTORS AND TENSORS [J].
COLEY, AA ;
TUPPER, BOJ .
GENERAL RELATIVITY AND GRAVITATION, 1991, 23 (10) :1113-1142
[8]   CONFORMAL KILLING VECTORS AND FRW SPACETIMES [J].
COLEY, AA ;
TUPPER, BOJ .
GENERAL RELATIVITY AND GRAVITATION, 1990, 22 (03) :241-251
[9]  
COLEY AA, 1992, CLASSICAL QUANT GRAV, V10, P2203
[10]   HOMOTHETIC AND CONFORMAL-SYMMETRIES OF SOLUTIONS TO EINSTEINS EQUATIONS [J].
EARDLEY, D ;
ISENBERG, J ;
MARSDEN, J ;
MONCRIEF, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 106 (01) :137-158