THE PAINLEVE PROPERTY FOR THE SELF-DUAL GAUGE-FIELD EQUATIONS

被引:78
作者
WARD, RS
机构
关键词
D O I
10.1016/0375-9601(84)90680-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:279 / 282
页数:4
相关论文
共 16 条
[1]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, DOI DOI 10.1137/1.9781611970883
[2]   INTEGRABLE HAMILTONIAN-SYSTEMS AND THE PAINLEVE PROPERTY [J].
BOUNTIS, T ;
SEGUR, H ;
VIVALDI, F .
PHYSICAL REVIEW A, 1982, 25 (03) :1257-1264
[3]   ANALYTIC STRUCTURE OF THE HENON-HEILES HAMILTONIAN IN INTEGRABLE AND NON-INTEGRABLE REGIMES [J].
CHANG, YF ;
TABOR, M ;
WEISS, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (04) :531-538
[4]   PAINLEVE PROPERTY AND MULTICOMPONENT ISOSPECTRAL DEFORMATION EQUATIONS [J].
CHUDNOVSKY, DV ;
CHUDNOVSKY, GV ;
TABOR, M .
PHYSICS LETTERS A, 1983, 97 (07) :268-274
[5]   CONSTRUCTION OF SELF-DUAL SOLUTIONS TO SU(2) GAUGE THEORY [J].
CORRIGAN, EF ;
FAIRLIE, DB ;
YATES, RG ;
GODDARD, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 58 (03) :223-240
[6]   BILDER UND URBILDER ANALYTISCHER GARBEN [J].
GRAUERT, H ;
REMMERT, R .
ANNALS OF MATHEMATICS, 1958, 68 (02) :393-443
[7]  
Ince EL., 1927, ORDINARY DIFFERENTIA
[8]   PAINLEVE TEST FOR THE SELF-DUAL YANG-MILLS EQUATION [J].
JIMBO, M ;
KRUSKAL, MD ;
MIWA, T .
PHYSICS LETTERS A, 1982, 92 (02) :59-60
[9]  
Kowalevski S., 1890, ACTA MATH-DJURSHOLM, V14, P81, DOI [DOI 10.1007/BF02413316, 10.1007/BF02413316]
[10]   LIE TRANSFORMATIONS, NON-LINEAR EVOLUTION-EQUATIONS, AND PAINLEVE FORMS [J].
LAKSHMANAN, M ;
KALIAPPAN, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (04) :795-806