RADIAL ION-TRANSPORT MEASUREMENTS IN A NONAXISYMMETRIC MAGNETIC-MIRROR

被引:4
作者
GOODMAN, DL
PETTY, CC
POST, RS
机构
[1] Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge
来源
PHYSICS OF FLUIDS B-PLASMA PHYSICS | 1990年 / 2卷 / 09期
关键词
D O I
10.1063/1.859398
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Experimental radial ion transport rates and diffusion coefficients are presented for the Constance-B magnetic mirror [Phys. Rev. Lett. 58, 1853 ( 1987)]. The transport experiments are performed by measuring steady state equilibrium radial profiles of plasma density, ionization source, end loss current, electric field, electron temperature, and ion temperature. A charge coupled device (CCD) camera system [Rev. Sci. Instrum. 60, 2835 (1989)] is used to measure the two-dimensional radial density, source, and electron temperature profiles. End loss diagnostics including movable Faraday cups, electrostatic end loss analyzers, and an ion time-of-flight analyzer [Rev. Sci. Instrum. 59, 601 (1988)] are used to measure radial profiles of potential and ion temperature. The ion confinement time perpendicular to the magnetic field is found to be an order of magnitude shorter than predicted by classical and neoclassical transport theories. The radial profiles of the perpendicular diffusion coefficient (D⊥) are presented for hydrogen, helium, and argon plasmas. The coefficients are a factor of 10 larger than the maximum classical and neoclassical coefficients in all three plasmas. Plasma fluctuations resulting from whistler mode microinstability [Phys. Rev. Lett. 59, 1821 (1987)] as well as nonaxisymmetric potentials are suggested as possible explanations for the experimentally measured radial transport rate. © 1990 American Institute of Physics.
引用
收藏
页码:2173 / 2184
页数:12
相关论文
共 46 条
[1]  
BALDWIN DE, AIP PAPS PFBPE022173
[2]   IONIZATION EQUILIBRIUM-MODEL FOR THE MULTIPLY CHARGED ION FORMATION [J].
BLIMAN, S ;
CHANTUNG, N .
JOURNAL DE PHYSIQUE, 1981, 42 (09) :1247-1252
[3]  
BRAGINSKII SI, 1965, REV PLASMA PHYS, V1, P283
[4]   ION RADIAL TRANSPORT IN THE TARA CENTRAL CELL [J].
BRAU, K ;
IRBY, JH ;
SEVILLANO, E ;
GOODMAN, D ;
CASEY, JA ;
GOLOVATO, SN ;
HORNE, S ;
POST, RS .
NUCLEAR FUSION, 1988, 28 (11) :2093-2101
[5]   MEASUREMENT OF A POTENTIAL BARRIER CREATED BY ELECTRON-CYCLOTRON RESONANCE HEATING [J].
CHANG, CP ;
LIEBERMAN, MA ;
MEUTH, H ;
LICHTENBERG, AJ .
PHYSICS OF FLUIDS, 1988, 31 (01) :123-128
[6]   EXPERIMENTAL-STUDY OF THE HOT-ELECTRON PLASMA EQUILIBRIUM IN A MINIMUM-B MAGNETIC-MIRROR [J].
CHEN, X ;
LANE, BG ;
SMATLAK, DL ;
POST, RS ;
HOKIN, SA .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1989, 1 (03) :615-628
[7]   OBSERVATION OF SCALING LAWS OF ION CONFINING POTENTIAL VERSUS THERMAL BARRIER DEPTH AND OF AXIAL PARTICLE CONFINEMENT TIME IN THE TANDEM MIRROR GAMMA-10 [J].
CHO, T ;
INUTAKE, M ;
ISHII, K ;
KATANUMA, I ;
KIWAMOTO, Y ;
MASE, A ;
NAKASHIMA, Y ;
SAITO, T ;
YAMAGUCHI, N ;
YATSU, K ;
HIRATA, M ;
KONDOH, T ;
SUGAWARA, H ;
FOOTE, JH ;
MIYOSHI, S .
NUCLEAR FUSION, 1988, 28 (12) :2187-2198
[8]   ANALYTIC APPROXIMATION TO RESONANT PLATEAU TRANSPORT-COEFFICIENTS FOR TANDEM MIRRORS [J].
COHEN, RH .
NUCLEAR FUSION, 1979, 19 (12) :1579-1585
[9]   PARTICLE AND ENERGY EXCHANGE BETWEEN UNTRAPPED AND ELECTROSTATICALLY CONFINED POPULATIONS IN MAGNETIC MIRRORS [J].
COHEN, RH ;
BERNSTEIN, IB ;
DORNING, JJ ;
ROWLANDS, G .
NUCLEAR FUSION, 1980, 20 (11) :1421-1437
[10]   POTENTIALS IN THERMAL BARRIERS WITH STRONG ELECTRON-CYCLOTRON HEATING [J].
COHEN, RH .
PHYSICS OF FLUIDS, 1983, 26 (10) :2774-2777