A SHEAR-FLEXIBLE TRIANGULAR FINITE-ELEMENT MODEL FOR LAMINATED COMPOSITE PLATES

被引:42
作者
LAKSHMINARAYANA, HV [1 ]
MURTHY, SS [1 ]
机构
[1] UNIV ARIZONA, TUCSON, AZ 85721 USA
关键词
D O I
10.1002/nme.1620200403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:591 / 623
页数:33
相关论文
共 29 条
[1]  
AHMAD S, 1970, INT J NUMER METH ENG, V2, P419, DOI DOI 10.1002/NME.1620020310
[2]  
Ashton JE, 1970, THEORY LAMINATED PLA
[3]  
BERT CW, 1974, COMPOSITE MATERIAL 1
[4]   FLEXURAL ANALYSIS OF LAMINATED COMPOSITES USING A PARABOLIC ISOMETRIC PLATE BENDING ELEMENT [J].
HINTON, E .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1977, 11 (01) :174-179
[5]   FINITE-ELEMENTS BASED UPON MINDLIN PLATE-THEORY WITH PARTICULAR REFERENCE TO THE 4-NODE BILINEAR ISOPARAMETRIC ELEMENT [J].
HUGHES, TJR ;
TEZDUYAR, TE .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1981, 48 (03) :587-596
[6]  
Lekhnitskii SG, 1968, ANISOTROPIC PLATES
[7]   SOLUTION OF A SEMICIRCULAR EDGE NOTCH [J].
LING, CB .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1977, 44 (03) :494-496
[8]   HIGH-ORDER THEORY OF PLATE DEFORMATION .2. LAMINATED PLATES [J].
LO, KH ;
CHRISTENSEN, RM ;
WU, EM .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1977, 44 (04) :669-676
[9]   FINITE ELEMENT SOLUTIONS FOR LAMINATED THICK PLATES [J].
MAU, ST ;
TONG, P ;
PIAN, THH .
JOURNAL OF COMPOSITE MATERIALS, 1972, 6 (APR) :304-&
[10]  
MINDLIN RD, 1951, J APPL MECH-T ASME, V18, P31