Ketosteroids (e.g., 19-nortestosterone) and phenolic steroids (e.g., 17 beta-estradiol and 17 beta-dihydroequilenin), which are potent competitive inhibitors of Delta(5)-3-ketosteroid isomerase (isomerase, EC 5.3.3.1) of Pseudomonas testosteroni, undergo significant polarization upon binding to the active site of the enzyme. The 10 nm red shift of the UV absorption maximum of the enone chromophore of 19-nortestosterone, which occurs in the enzyme-steroid complex, resembles that observed when this steroid is exposed to strong acid. The UV and fluorescence spectral changes of 17 beta-estradiol and 17 beta-dihydroequilenin in the enzyme-bound complex resemble the spectra of ionized phenolate species in aqueous basic solutions. Since most enzymes bind their substrates and competitive inhibitors in a solvent-inaccessible hydrophobic environment, and the generation of charges in such nonpolar environments is unfavorable, we investigated the possibility that the spectral perturbations of the steroids might arise from strong hydrogen bonding in nonpolar environments. For this purpose, the spectral properties of model compounds capable of forming intramolecular hydrogen bonds were studied in nonpolar solvents. Thus, 4-hydroxyandrost-4-ene-3,17-dione, in which the 4-hydroxyl group is intramolecularly hydrogen-bonded to the 3-carbonyl group through a five-membered ring, exhibits a lambda(max) of 276.0 nm, while the corresponding 4-methyl ether, 4-methoxyandrost-4-ene-3,17-dione, which cannot form an internal hydrogen bond, shows a lambda(max) of 258.5 nm in aqueous solution. This 17.5 nm difference in lambda(max) increases, as the solvent polarity is lowered, to a difference of 24.0 nm in hexane, presumably because there is less competition for hydrogen bond formation by the less polar solvent molecules. 2-Hydroxybenzoic acid showed progressively increasing red shifts and enhancements of UV absorption as the polarity of solvents was decreased, and these changes resembled those of 17 beta-estradiol when bound to isomerase. The spectral changes of 17 beta-dihydroequilenin, when bound to isomerase, are better approximated by those of 1-acetyl-2-naphthol in nonpolar solvents, which strengthen the intramolecular hydrogen bond, than by ionization of 17 beta-dihydroequilenin in strong aqueous base. Both fluorescence emission and excitation spectra of 17 beta-dihydroequilenin in aqueous solution can be significantly altered by high concentrations of hydrogen bond accepters such as malonate, and these changes closely mimic the spectral properties of 17 beta-dihydroequilenin bound to isomerase. These results indicate that strong, directional hydrogen bond(s) to the functional groups of steroids in the solvent-inaccessible active site can explain the spectral behavior of these steroids when bound to isomerase. Such strong hydrogen-bonding interactions in the enzyme-inhibitor complexes implicate a low-barrier hydrogen bond between Tyr-14 and the enolic intermediate during catalysis.