EXACT MANY-BODY SOLUTION OF THE PERIODIC-CLUSTER T-T'-J MODEL FOR CUBIC SYSTEMS - GROUND-STATE PROPERTIES

被引:17
作者
FREERICKS, JK [1 ]
FALICOV, LM [1 ]
机构
[1] UNIV CALIF BERKELEY LAWRENCE BERKELEY LAB, DIV MAT & CHEM SCI, BERKELEY, CA 94720 USA
来源
PHYSICAL REVIEW B | 1990年 / 42卷 / 08期
关键词
D O I
10.1103/PhysRevB.42.4960
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The t-t-J model (strongly interacting limit of a particular Hubbard model) is solved exactly on small clusters of eight sites with periodic boundary conditions for the simple-, body-centered-, and face-centered-cubic lattices and for the two-dimensional square lattice. The symmetry, k vector, and spin of the ground state are studied as functions of crystalline environment, interaction strength, and electron concentration. Phase diagrams are presented for stable solutions, and regions of parameter space that exhibit ferromagnetism and heavy-fermionic behavior are identified. © 1990 The American Physical Society.
引用
收藏
页码:4960 / 4978
页数:19
相关论文
共 111 条
[1]   CLASS OF VARIATIONAL SINGLET WAVE-FUNCTIONS FOR THE HUBBARD-MODEL AWAY FROM HALF FILLING [J].
ANDERSON, PW ;
SHASTRY, BS ;
HRISTOPULOS, D .
PHYSICAL REVIEW B, 1989, 40 (13) :8939-8944
[2]  
ANDERSON PW, 1963, SOLID STATE PHYS, V14, P99
[3]   THE RESONATING VALENCE BOND STATE IN LA2CUO4 AND SUPERCONDUCTIVITY [J].
ANDERSON, PW .
SCIENCE, 1987, 235 (4793) :1196-1198
[4]   SUPERSYMMETRIC T-J MODEL IN ONE DIMENSION - SEPARATION OF SPIN AND CHARGE [J].
BARES, PA ;
BLATTER, G .
PHYSICAL REVIEW LETTERS, 1990, 64 (21) :2567-2570
[5]   STABILITY OF THE FERROMAGNETIC STATE WITH RESPECT TO A SINGLE SPIN-FLIP - VARIATIONAL CALCULATIONS FOR THE U=INFINITY HUBBARD-MODEL ON THE SQUARE LATTICE [J].
BASILE, AG ;
ELSER, V .
PHYSICAL REVIEW B, 1990, 41 (07) :4842-4845
[6]   POSSIBLE HIGH-TC SUPERCONDUCTIVITY IN THE BA-LA-CU-O SYSTEM [J].
BEDNORZ, JG ;
MULLER, KA .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1986, 64 (02) :189-193
[7]   EXACT-DIAGONALIZATION STUDY OF THE EFFECTIVE MODEL FOR HOLES IN THE PLANAR ANTIFERROMAGNET [J].
BONCA, J ;
PRELOVSEK, P ;
SEGA, I .
PHYSICAL REVIEW B, 1989, 39 (10) :7074-7080
[8]   Theory of Brilloum zones and symmetry properties of wave functions in crystals [J].
Bouckaert, LP ;
Smoluchowski, R ;
Wigner, E .
PHYSICAL REVIEW, 1936, 50 (01) :58-67
[9]  
BURNS G, 1978, SPACE GROUPS SOLID S, P213
[10]   STATISTICAL MECHANICS OF HALF-FILLED-BAND HUBBARD MODEL [J].
CABIB, D ;
KAPLAN, TA .
PHYSICAL REVIEW B, 1973, 7 (05) :2199-2203